• Title/Summary/Keyword: Chow groups

Search Result 88, Processing Time 0.029 seconds

Korean Red Ginseng enhances cardiac hemodynamics on doxorubicin-induced toxicity in rats

  • Jang, Young-Jin;Lee, Dongbin;Hossain, Mohammad Amjad;Aravinthan, Adithan;Kang, Chang-Won;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.483-489
    • /
    • 2020
  • Background: Korean Red Ginseng (KRG) has been known to possess many ginsenosides. These ginsenosides are used for curing cardiovascular problems. The present study show the protective potential of KRG against doxorubicin (DOX)-induced myocardial dysfunction, by assessing electrocardiographic, hemodynamic, and biochemical parameters and histopathological findings. Methods: Animals were fed a standard chow and adjusted to their environment for 3 days before the experiments. Next, the rats were equally divided into five groups (n = 9, each group). The animals were administered with KRG (250 and 500 mg/kg) for 10 days and injected with DOX (20 mg/kg, subcutaneously, twice at a 24-h interval) on the 8th and 9th day. Electrocardiography and echocardiography were performed to study hemodynamics. Plasma levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were measured. In addition, the dose of troponin I and activity of myeloperoxidase in serum and cardiac tissue were analyzed, and the histopathological findings were evaluated using light microscopy. Results: Administration of KRG at a dose of 250 and 500 mg/kg recovered electrocardiographic changes, ejection fraction, fractional shortening, left ventricular systolic pressure, the maximal rate of change in left ventricle contraction (-dP/dtmax), and left ventricle relaxation (-dP/dtmax). In addition, KRG treatment significantly normalized the oxidative stress markers in plasma, dose dependently. In addition, the values of troponin I and myeloperoxidase were ameliorated by KRG treatment, dose dependently. And, KRG treatment showed better histopathological findings when compared with the DOX control group. Conclusion: These mean that KRG mitigates myocardial damage by modulating the hemodynamics, histopathological abnormality, and oxidative stress related to DOX-induced cardiomyopathy in rats. The results of the present study show protective effects of KRG on cardiac toxicity.

Highly Active Antiretroviral Therapy Alters Sperm Parameters and Testicular Antioxidant Status in Diet-Induced Obese Rats

  • Oyeyipo, Ibukun P.;Skosana, Bongekile T.;Everson, Frans P.;Strijdom, Hans;du Plessis, Stefan S.
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • The efficacy of highly active antiretroviral therapy (HAART) has led to an increase demand for therapeutic use, thereby necessitating investigation into drug toxicity. This study was designed to investigate the in vivo effects of HAART on sperm parameters and testicular oxidative stress in lean and obese rats. Wistar rats (males, n = 40, weighing 180~200 g) were assigned randomly into 4 groups and treated accordingly for 16 weeks as follows: Control (C): lean group fed with standard rat chow; Diet induced obesity (DIO): obese animals fed a high caloric diet; C + ART: lean animals treated with HAART; DIO + ART: obese animals treated with HAART. An antiretroviral drug combination of Tenofovir, Emtricitabine and Efavirenz at a dose of 17, 26 and 50 mg/kg/day was administered for the latter 6 weeks via jelly cube feeding. At the end of the experimental period, sperm analysis was performed on sperm collected from the caudal epididymis, while the testis was homogenized for antioxidant enzyme and lipid peroxidation assays. Results showed that HAART significantly decreased sperm motility (p < 0.05) in both lean and obese animals, and viability (p < 0.05) in the DIO group. Testicular glutathione, catalase and superoxide dismutase were significantly decreased (p < 0.05), while Thiobarbituric acid reactive substances (TBARS) levels were significantly increased (p < 0.05) when the DIO+ART group was compared to Control group. Thus, the decreased sperm qualities associated with HAART might be as a result of increased testicular oxidative stress prominent in obese animals.

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas

  • Yang, Hye-Won;Son, Myeongjoo;Choi, Junwon;Oh, Seyeon;Jeon, You-Jin;Byun, Kyunghee;Ryu, Bo Mi
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.

Dietary supplementation with astaxanthin may ameliorate sperm parameters and DNA integrity in streptozotocin-induced diabetic rats

  • Bahmanzadeh, Maryam;Vahidinia, Aliasghar;Mehdinejadiani, Shayesteh;Shokri, Saeed;Alizadeh, Zohreh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.90-96
    • /
    • 2016
  • Objective: Diabetes mellitus (DM) is known to cause many systemic complications as well as male infertility. Astaxanthin (ASTX) is a powerful antioxidant that is involved in a variety of biologically active processes, including those with anti-diabetes effects. The present study investigates the effect of ASTX on the spermatozoa function in streptozotocin (STZ)-induced diabetic rats. Methods: We divided 30 adult rats into three groups (10 rats per group), with a control group that received corn oil mixed with chow. DM was induced by intra-peritoneal injection of STZ. Eight weeks after the STZ injection, half of the diabetic animals were used as diabetic controls, and the rest were treated with ASTX for 56 days. Then the parameters and chromatin integrity of the epididymal sperm were analyzed using chromomycin A3, toluidine blue (TB), and acridine orange (AO) staining. Results: The count, viability, and motility of the epididymal sperm were decreased significantly in the STZ group in comparison with the control group (count and viability, p<0.001; motility, p<0.01). ASTX increased normal morphology and viable spermatozoa compared to the STZ group (morphology, p=0.001; viability, p<0.05). The percentage of abnormal chromatins in TB and AO staining was higher in the STZ group compared to the control group (p<0.001). The mean percentage of TB and AO positive spermatozoa in STZ rats was significantly lower in the STZ+ASTX group (TB, p=0.001; AO, p<0.05). Conclusion: This study observed that in vivo ASTX treatment partially attenuates some detrimental effect of diabetes. Conversely, ASTX improved sperm viability, normal morphology, and DNA integrity.

Quercetin Affects Spermatogenesis-Related Genes of Mouse Exposed to High-Cholesterol Diet

  • Yang, Changwon;Bae, Hyocheol;Song, Gwonhwa;Lim, Whasun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.73-85
    • /
    • 2020
  • A high-cholesterol diet can reduce male fertility. However, it is not known whether a high-cholesterol diet can regulate the expression of genes involved in sperm maturation and sperm fertilizing ability. Quercetin, a natural product, is known to have cytoprotective effects by regulating lipid metabolism in various cell types. This study aimed to confirm the expression of genes involved in sperm maturation in the testes of mice fed a high-cholesterol diet and to determine whether quercetin can reverse the genetic regulation of cholesterol. Mice were divided into groups fed a normal chow diet and a high-cholesterol diet. Mice fed the high-cholesterol diet were dose-dependently supplemented with quercetin for 6 weeks. Investigations using quantitative PCR and in situ hybridization revealed that the high-cholesterol diet alters the expression of genes associated with sperm maturation in the testes of mice, and this was reversed with the supplementation of quercetin. In addition, the high-cholesterol diet regulated the expression of genes related to lipid metabolism in the liver of mice. Under a high-cholesterol diet, quercetin can improve male fertility by regulating the expression of genes involved in sperm maturation.

Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice

  • Jin, Heegu;Oh, Hyun-Ji;Nah, Seung-Yeol;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.454-463
    • /
    • 2022
  • Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.

Effects of extreme heat stress and continuous lighting on growth performance and blood lipid in broiler chickens (연속조명과 폭염 스트레스가 육계의 혈액지질 및 성장능력에 미치는 영향)

  • Park, Sang-Oh;Hwangbo, Jong;Ryu, Chae-Min;Yoon, Jae-Sung;Park, Byung-Sung;Kang, Hwan-Ku;Seo, Ok-Suk;Chae, Hyun-Seok;Choi, Hee-Chul;Choi, Yang-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.78-87
    • /
    • 2013
  • In this study, the effect of extreme heat diet on growth performance, lymphoid organ, blood immunoglobulin and cecum microflora change in broilers exposed to continuous lighting and extreme heat stress (EHS) was studied. Broilers raised under normal environment temperature ($25^{\circ}C$ or extreme heat stress temperature ($33{\pm}2^{\circ}C$, and consumed chow diet (CD) or extreme heat stress diet (EHSD). Five hundred Ross 308 day-old commercial broilers were arranged in a completely randomized block design of 5 treatment groups with 4 repetitions (25 heads per repetition pen). The broilers were divided into: T1 (normal environment+CD), T2 (EHS+CD), T3 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses), T4 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses, and 1.5 times more methionine and lysine than CD), and T5 (EHS+EHSD in which the tallow in CD was substituted by soy oil, contained 5% molasses, 1.5 times more methionine and lysine than CD, and 300ppm of vitamin C). The EHS significantly reduced the body weight gain and feed intake. The blood immunoglobulin, bursa of Fabricius, thymus, and spleen weight were significantly reduced when broilers were exposed to EHS. Compared to the normal environment temperature group, the cecum Lactobacillus sp. was low in the EHS treatment group, while Escherichia sp., Salmonella sp. and total aerobic bacteria in the EHS treatment group were high. A statistically significant difference was acknowledged between the treatment groups.

The Biological Effects of β-Cyclodextrin on Antithrombotic Activity and Plasma Lipid Metabolism in Rats (흰쥐에서 혈액지질 대사 및 항혈전작용에 관한 베타사이클로덱스트린의 생물학적 효과)

  • Park, B. S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.199-210
    • /
    • 2003
  • The effect of feeding a cyclic oligosaccharide, $\beta$-cyclodextrin($\beta$CD) on plasma cholesterol and triacylglyceride concentrations and on antithrombotic activity were investigated in rats fed a control chow diet, or one either high in cholesterol or in saturated fat. The bleeding time of $\beta$CD-fed groups was significantly prolonged by 293%, 157% and 218% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The whole blood clotting time was significantly increased by 202%, 168% and 211% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The $\beta$CD diet caused a marked decrease in plasma total lipid(TL), triacylglyceride(TAG), total cholesterol (TC) and low density lipoprotein- cholesterol (LDL-C) concentrations. The plasma TL concentration was significantly decreased by 70%, 82% and 87% in normal, high cholesterol and high fat diet fed groups as compared to the control group, respectively(p<0.05). The plasma TAG concentration was significantly decreased by 89%, 43% and 59% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The plasma TC concentration was significantly decreased by 28%, 62% and 36% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The LDL-C concentration was significantly decreased by 39%, 54% and 25% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The plasma total bile acids contents of $\beta$CD group was significantly increased by 66%, 95% and 97% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The hepatic HMG-CoA reductase activity was significantly lowered by 41% in the $\beta$CD-fed group compared to normal diet fed rats(p<0.05). The fecal steroid excretions of the $\beta$CD groups was significantly increased by 167% in normal diet fed rats(p<0.05). These results suggest that the $\beta$CD has a biological active function on antithrombotic activity and is hypolipidemic, hypotriglyceridemic and hypocholesterolimic agents. These are all effects that can help to prevent obesity and coronary heart disease in humans.

Effects of Milk with Boiled-Dried Large Anchovy, Calcium-Fortifying Materials and Fortified-Calcium Milk on Calcium Absorption Rate and Bone Metabolism in Rats (자건대멸, 칼슘강화소재를 첨가한 우유 및 칼슘강화우유가 흰쥐의 칼슘흡수율과 골대사에 미치는 영향)

  • Jo, Jin-Ho;Kim, Byung-Gi;Han, Chan-Kyu;Jung, Eun-Bong;Cho, Seung-Mock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.459-464
    • /
    • 2008
  • This study was performed to investigate the effect of calcium-rich large anchovy on calcium metabolism in rats for 5 weeks. Experimental animals were randomly assigned to 5 treatments with 14 heads of Spraque Dawley male rats in each group. The experimental diets were as follows; market milk group (M) as control, market milk+calcium-rich large anchovy group (MA), market milk+calcium carbonate group (MC), market milk+calcium lactate group (ML), and enriched-calcium market milk group (M2), which were formulated with commercially semi-purified rat chow (AIN-diet) to maintain the same level of calcium (1%) in all groups. Femur lengths of M and M2 groups were significantly higher than other groups. Bone mineral density (BMD) and bone mineral content (BMC) and calcium content of femur were the highest in MA group than other groups. In vitro and in vivo calcium absorption rates were high in MA group (7.30% vs 27.50%) compared with those of the other groups. Serum total-cholesterol and HDL-cholesterol levels were significantly different between M group and MA group (p<0.05). Creatinine levels were significantly higher in M, MA and MC groups than in M2 group (p<0.05). Serum calcium, osteocalcin and ALPase activities were higher in calcium-rich large anchovy (MA) group among the treatments, but there was no significant difference. SGOT activity was significantly lower in M2 group than those of M, MA and MC groups (p<0.05). These results may indicate that the calcium-rich large anchovy has enforced the BMD, BMC and calcium absorption rates of in vitro and in vivo compared with the other groups and might be a calcium-enriched food with large anchovy.