• Title/Summary/Keyword: Chosun-Sanhak

Search Result 7, Processing Time 0.021 seconds

A Study on the Features of the Curriculum of Chosun-Sanhak in the 17th to 18th Century (17-18세기 조선산학의 교육과정적 특징 고찰)

  • Choi, Eun Ah
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.409-428
    • /
    • 2014
  • The purpose of this study is to examine the features of the curriculum of Chosun-Sanhak(朝鮮算學), the mathematics of Chosun Dynasty in the 17th to 18th century. The results of this study are as follows. First, the goal of education, teaching-learning method and assessment of Chosun-Sanhak in the 17th to 18th century had not changed since the 15th century. Second, the changes in the field of the organization of mathematical contents were observed. Chosun-Sanhak in that time was higher in the hierarchy than in the 15th to 16th century. The share of the equation and geometry had increased and various topics of mathematics had been studied as well. Third, in the field of the characteristics of mathematical contents, the influx of European mathematics and the uniqueness of Chosun-Sanhak had been observed. In conclusion, The 17th to 18th century was the time when Chosun-Sanhak had pursued the identity escaping from the effects of Chinese-Sanhak.

  • PDF

A Study on the Using of Chosun-Sanhak for the Enriched Learning about Pi (원주율에 대한 심화학습을 위한 조선산학의 활용 연구)

  • Choi, Eunah
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.811-831
    • /
    • 2017
  • The purpose of this study is to analyze the contents of pi of Chosun-sanhak and organize the teaching and learning activities to help to understand the concept of pi deeply using the analysis results. The results of this study are as follows. First, Chosun-sanhak used various approximate values of pi and those were represented as the form to reveal the meaning of the ratio of radius and circumference. Second, There were the freedom of selection of the approximate values of pi suitably. Lastly, the enriched leaning about pi need to draw a distinction pi from approximate values of pi, choose the suitable approximate values of pi and compare the method of calculation of circumference and the area of circle of Chosun-sanhak and today's mathematics. In conclusion, I proposed several issues which is worth exploring further in relation to pi and Chosun-Sanhak.

A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century (18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구)

  • Choi, Eunah
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.25-44
    • /
    • 2020
  • This study investigated the representation and algorithms of western mathematics reflected on the algebra domains of Chosun-Sanhak in the 18th century. I also analyzed the co-occurrences and replacement phenomenon between western algorithms and traditional algorithms. For this purpose, I analyzed nine Chosun mathematics books in the 18th century, including Gusuryak and Gosasibijip. The results of this study are as follows. First, I identified the process of changing to a calculation by writing of western mathematics, from traditional four arithmetical operations using Sandae and the formalized explanation for the proportional concept and proportional expression. Second, I observed the gradual formalization of mathematical representation of the solution for a simultaneous linear equation. Lastly, I identified the change of the solution for square root from traditional Gaebangsul and Jeungseunggaebangbeop to a calculation by the writing of western mathematics.

Educational Application of Chosun Mathematics in Education of Prospective Elementary School Teachers (예비 교사교육에서 수학사의 교육적 적용 : 조선산학 프로그램을 중심으로)

  • Choi, Eun Ah
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-202
    • /
    • 2015
  • In this research, I explored how to apply the history of mathematics in teacher education and investigated the applicability of Chosun Sanhak (mathematics of Chosun Dynasty) as the program that enriched the mathematical knowledge for teaching of prospective elementary school teachers. This program included not only mathematical knowledge but also socio-cultural knowledge and connection knowledge. Prospective teachers participated in various mathematical activities such as explaining, reasoning and problem solving in this program. The effects of this program are as follows. Prospective teachers learned the subject matter knowledge(SMK) which was helpful in teaching basic concepts and skills of elementary mathematics. Next, this program produced the pedagogical content knowledge(PCK) to prospective teachers by giving ideas how to teach.

Educational policy and curriculums of Korean school mathematics in the late 19th and early 20th century (식민지 수학교육 정책과 19세기 말과 20세기 전반 한국수학 교육과정 연구)

  • Lee, Sang-Gu;Noh, Ji-Hwa;Song, Sung-Yell
    • Communications of Mathematical Education
    • /
    • v.23 no.4
    • /
    • pp.1093-1130
    • /
    • 2009
  • The purpose of this study is to examine obstacles to progress for 20th century Korean mathematics. In 1945, shortly after Korea was liberated from Japan, there were no Korean mathematics Ph.D. holders, less than ten bachelor degree holders, and only one person with a master's degree in mathematics. We investigate the reasons for this. Korea has to overcome such an unforgiving condition and rebuild quality education programs in higher mathematics over the last several decades. These debilitating circumstances in higher mathematics were considerable obstacles in developing a higher level of mathematical research for the mainstream of 20th century world mathematics. We study policy and curriculums of Korean school mathematics in the late 19th and early 20th century, with some educational and socio-political background.

  • PDF

Mathematics and Society in Koryo and Chosun (고려.조선시대의 수학과 사회)

  • Joung Ji-Ho
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.48-73
    • /
    • 1986
  • Though the tradition of Korean mathematics since the ancient time up to the 'Enlightenment Period' in the late 19th century had been under the influence of the Chinese mathematics, it strove to develop its own independent of Chinese. However, the fact that it couldn't succeed to form the independent Korean mathematics in spite of many chances under the reign of Kings Sejong, Youngjo, and Joungjo was mainly due to the use of Chinese characters by Koreans. Han-gul (Korean characters) invented by King Sejong had not been used widely as it was called and despised Un-mun and Koreans still used Chinese characters as the only 'true letters' (Jin-suh). The correlation between characters and culture was such that, if Koreans used Han-gul as their official letters, we may have different picture of Korean mathematics. It is quite interesting to note that the mathematics in the 'Enlightenment Period' changed rather smoothly into the Western mathematics at the time when Han-gul was used officially with Chinese characters. In Koryo, the mathematics existed only as a part of the Confucian refinement, not as the object of sincere study. The mathematics in Koryo inherited that of the Unified Shilla without any remarkable development of its own, and the mathematicians were the Inner Officials isolated from the outside world who maintained their positions as specialists amid the turbulence of political changes. They formed a kind of Guild, their posts becoming patrimony. The mathematics in Koryo significant in that they paved the way for that of Chosun through a few books of mathematics such as 'Sanhak-Kyemong', 'Yanghwi-Sanpup' and 'Sangmyung-Sanpup'. King Sejong was quite phenomenal in his policy of promotion of mathematics. King himself was deeply interested in the study, createing an atmosphere in which all the high ranking officials and scholars highly valued mathematics. The sudden development of mathematic culture was mainly due to the personality and capacity of king who took anyone with the mathematic talent into government service regardless of his birth and against the strong opposition of the conservative officials. However, King's view of mathematics never resulted in the true development of mathematics perse and he used it only as an official technique in the tradition way. Korean mathematics in King Sejong's reign was based upon both the natural philosophy in China and the unique geo-political reality of Korean peninsula. The reason why the mathematic culture failed to develop continually against those social background was that the mathematicians were not allowed to play the vital role in that culture, they being only the instrument for the personality or politics of the king. While the learned scholar class sometimes played the important role for the development of the mathematic culture, they often as not became an adamant barrier to it. As the society in Chosun needed the function of mathematics acutely, the mathematicians formed the settled class called Jung-in (Middle-Man). Jung-in was a unique class in Chosun and we can't find its equivalent in China or Japan. These Jung-in mathematician officials lacked tendency to publish their study, since their society was strictly exclusive and their knowledge was very limited. Though they were relatively low class, these mathematicians played very important role in Chosun society. In 'Sil-Hak (the Practical Learning) period' which began in the late 16th century, especially in the reigns of Kings Youngjo and Jungjo, which was called the Renaissance of Chosun, the ambitious policy for the development of science and technology called for. the rapid increase of he number of such technocrats as mathematics, astronomy and medicine. Amid these social changes, the Jung-in mathematicians inevitably became quite ambitious and proud. They tried to explore deeply into mathematics perse beyond the narrow limit of knowledge required for their office. Thus, in this period the mathematics developed rapidly, undergoing very important changes. The characteristic features of the mathematics in this period were: Jung-in mathematicians' active study an publication, the mathematic studies by the renowned scholars of Sil-Hak, joint works by these two classes, their approach to the Western mathematics and their effort to develop Korean mathematics. Toward the 'Enlightenment Period' in the late 19th century, the Western mathematics experienced great difficulty to take its roots in the Peninsula which had been under the strong influence of Confucian ideology and traditional Korean mathematic system. However, with King Kojong's ordinance in 1895, the traditional Korean mathematics influenced by Chinese disappeared from the history of Korean mathematics, as the school system was hanged into the Western style and the Western mathematics was adopted as the only mathematics to be taught at the Schools of various levels. Thus the 'Enlightenment Period' is the period in which Korean mathematics shifted from Chinese into European.

  • PDF

MATHEMATICS AND SOCIETY IN KORYO AND CHOSUN (고려.조선시대의 수학과 사회)

  • 정지호
    • Journal for History of Mathematics
    • /
    • v.2 no.1
    • /
    • pp.91-105
    • /
    • 1985
  • Though the tradition of Korean mathematics since the ancient time up to the "Enlightenment Period" in the late 19th century had been under the influence of the Chinese mathematics, it strove to develop its own independent of Chinese. However, the fact that it couldn't succeed to form the independent Korean mathematics in spite of many chances under the reign of Kings Sejong, Youngjo, and Joungjo was mainly due to the use of Chinese characters by Koreans. Han-gul (Korean characters) invented by King Sejong had not been used widely as it was called and despised Un-mun and Koreans still used Chinese characters as the only "true letters" (Jin-suh). The correlation between characters and culture was such that , if Koreans used Han-gul as their official letters, we may have different picture of Korean mathematics. It is quite interesting to note that the mathematics in the "Enlightenment Period" changed rather smoothly into the Western mathematics at the time when Han-gul was used officially with Chinese characters. In Koryo, the mathematics existed only as a part of the Confucian refinement, not as the object of sincere study. The mathematics in Koryo inherited that of the Unified Shilla without any remarkable development of its own, and the mathematicians were the Inner Officials isolated from the outside world who maintained their positions as specialists amid the turbulence of political changes. They formed a kind of Guild, their posts becoming patrimony. The mathematics in Koryo is significant in that they paved the way for that of Chosun through a few books of mathematics such as "Sanhak-Kyemong, "Yanghwi - Sanpup" and "Sangmyung-Sanpup." King Sejong was quite phenomenal in his policy of promotion of mathematics. King himself was deeply interested in the study, createing an atmosphere in which all the high ranking officials and scholars highly valued mathematics. The sudden development of mathematic culture was mainly due to the personality and capacity of King who took any one with the mathematic talent onto government service regardless of his birth and against the strong opposition of the conservative officials. However, King's view of mathematics never resulted in the true development of mathematics per se and he used it only as an official technique in the tradition way. Korean mathematics in King Sejong's reign was based upon both the natural philosophy in China and the unique geo-political reality of Korean peninsula. The reason why the mathematic culture failed to develop continually against those social background was that the mathematicians were not allowed to play the vital role in that culture, they being only the instrument for the personality or politics of the King. While the learned scholar class sometimes played the important role for the development of the mathematic culture, they often as not became an adamant barrier to it. As the society in Chosun needed the function of mathematics acutely, the mathematicians formed the settled class called Jung-in (Middle-Man). Jung-in was a unique class in Chosun and we can't find its equivalent in China of Japan. These Jung-in mathematician officials lacked tendency to publish their study, since their society was strictly exclusive and their knowledge was very limited. Though they were relatively low class, these mathematicians played very important role in Chosun society. In "Sil-Hak (the Practical Learning) period" which began in the late 16th century, especially in the reigns of King Youngjo and Jungjo, which was called the Renaissance of Chosun, the ambitious policy for the development of science and technology called for the rapid increase of the number of such technocrats as mathematicians inevitably became quite ambitious and proud. They tried to explore deeply into mathematics per se beyond the narrow limit of knowledge required for their office. Thus, in this period the mathematics developed rapidly, undergoing very important changes. The characteristic features of the mathematics in this period were: Jung-in mathematicians' active study an publication, the mathematic studies by the renowned scholars of Sil-Hak, joint works by these two classes, their approach to the Western mathematics and their effort to develop Korean mathematics. Toward the "Enlightenment Period" in the late 19th century, the Western mathematics experienced great difficulty to take its roots in the Peninsula which had been under the strong influence of Confucian ideology and traditional Korean mathematic system. However, with King Kojong's ordinance in 1895, the traditonal Korean mathematics influenced by Chinese disappeared from the history of Korean mathematics, as the school system was changed into the Western style and the Western matehmatics was adopted as the only mathematics to be taught at the schools of various levels. Thus the "Enlightenment Period" is the period in which Korean mathematics sifted from Chinese into European.od" is the period in which Korean mathematics sifted from Chinese into European.pean.

  • PDF