• Title/Summary/Keyword: Cholinergic

Search Result 406, Processing Time 0.032 seconds

Protective Effect of Soybean-Derived Phosphatidylserine on the Trimethyltin-Induced Learning and Memory Deficits in Rats

  • An, Yong Ho;Park, Hyun Jung;Shim, Hyun Soo;Choe, Yun Seok;Han, Jeong Jun;Kim, Jin Su;Lee, Hye Jung;Shim, Insop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • The present study examined the effects of soybean-derived phosphatidylserine (SB-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The cognitive improving efficacy of SB-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing cholineacetyl transferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. A positron emission tomography (PET) scanning the rat brain was by performed administer 18F-Fluorodeoxy-glucose (18F-FDG). The rats with TMT injection showed impaired learning and memory of the tasks and treatment with SB-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd day compared to that of the MCT group. In the retention test, the SB-PS group showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, SB-PS 50 group significantly alleviated the loss of acetyl cholinergic neurons in the hippocampus compared to that of the MCT group. Treatment with SB-PS significantly increased the CREB positive neurons in the hippocampus as compared to that of the MCT group. In addition, SB-PS groups increased the glucose uptake in the hippocampus and SB-PS 50 group increased the glucose uptake in the frontal lobe, as compared to that of the MCT group. These results suggest that SB-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Calcium Movement in Carbachol-stimulated Cell-line (Calcium수송기전에 미치는 Carbachol의 영향)

  • Lee, Jong-Hwa
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.355-363
    • /
    • 1995
  • It has been well known that the intracellular calcium concentration $([Ca^{2+}]_i)$ in living cell is very sensitive to live or to survive, but the transmembrane system of calcium ion, especially mechanism of calcium ion movement in unexcitable state has been little elucidated. Though many proposed theories for calcium ion transport have been reported, it is still unclear that how could the sustained maintenance in cytosolic calcium level be done in cell. Since one of possible mechanisms of calcium transport may be related to the acetylcholine receptor-linked calcium channel, author performed experiment to elucidate this mechanism of calcium influx related to cholinergic receptor in ml muscarinic receptor-transfected RBL-2H3 cell-line. 1) The effects of carbachol both on calcium ion influx and on the secretion of hexosaminidase were respectively observed in the manner of time-related or concentration-dependent pattern in this model. 2) The effects of several metal cations on calcium transport were shown in carbachol-induced cell-line. 3) Atropine was administered to examine the relationship between cholinergic receptor and calcium ion influx in this model. 4) PMA (Phorbol 12-myristate 13-acetate) or PTx (Pertussis toxin) was respectively administered to examine the secondary mediator which involved pathway of calcium ion movement in carbachol-induced cell-line. The results of this experiments were as follows; 1) Carbachol significantly stimulated both the calcium influx and the secretion of hexosaminidase in the manner of the concentration-dependent pattern. 2) Atropine potently blocked the effects of carbachol in concentration-response manner. 3) Administered metal cations inhibited the calcium influx in carbachol-stimulated this model to the concentration-related pattern. 4) PMA did not inhibit carbachol-induced secretion of hexosaminidase, but blocked the calcium influx in this cell-line. 5) The suppression of carbachol-induced hexosaminidase secretion was shown in PTx-treated cell -line.

  • PDF

Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee;Seo, Yu-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.

Forskolin-Induced Potentiation of Catecholamine Secretion Evoked By Ach, DMPP, McN-A-343 and Excess $K^+$ From the Rat Adrenal Gland (Forskolin의 흰쥐적출관류부신으로 부터 Ach, Excess $K^+$, DMPP, McN-A-343에 의한 Catecholamine 분비효과의 증강작용)

  • Lim, Dong-Yoon;Kim, Won-Shik;Choi, Cheol-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-181
    • /
    • 1991
  • The present study was an attempt to investigate the effect of forskolin on secretion of catecholamines (CA) evoked by Ach, excess $K^+$, DMPP, McN-A-343 and caffeine from the isolated perfused rat adrenal glands and to elucidate its mechanism of action. The perfusion with forskolin (1.0 uM) for 1 min into the adrenal vein enhanced markedly the secreation of CA evoked by Ach (50 ug), excess $K^+$ (56 mM) DMPP (100 uM) and by caffeine (0.3 mM) but did not that by McN-A-343. Forskolin alone did not potentiate the CA secretion. Moreover, forskolin augmented the CA release evoked by the above same stimulation even in the absence of extracellular calcium. The 1 min perfusion of 300 uM-dibutyryl cyclic AMP (DBcAMP), which is known to increase cyclic AMP levels, led to enhancement of Ca secretion evoked by Ach, excess $K^+$ and DMPP but did not that by McN-A-343 and caffeine. DBcAMP by itself also did not augment the CA secretion. In the calcium-free medium DBcAMP significantly enhanced the CA secretion by the same stimulation, except for the case of McN-A-343. These experimental results suggest that forskolin activates adenylate cyclase, resulting the elevation of cyclic AMP which may potentiate cholinergic nicotinic receptor-mediated and also depolarization-dependent CA secretion and that it may alter the intracellular calcium homeostasis in the rat adrenal glands.

  • PDF

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Effect of Adenosine on the Mechanical and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 기계적 및 전기적 활동에 대한 아데노신 효과)

  • Kim, Heui-Jeen;Ko, Kwang-Wook;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.225-239
    • /
    • 1987
  • The effects of adenosine on the mechanical contractions and electrical activities were investigated in guinea-pig stomach. Spontaneous contractions of the antral region were recorded with force transducer, and the phasic contractions of fundic region were induced by electrical field stimulation. Electrical responses of smocth muscle cells were recored using glass capillary microelectrodes filled with 3M-KCl. Field stimulation was applied transmurally by using a pair of platinum wire (0.5 mm in diameter) placed on both sides of tissue. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows. 1) Adenosine suppressed the spontaneous contractions of antrum in a dose-dependent manner. 2) The inhibitory effect on antral spontaneous contractions was not influenced by the administration of guanethidine $(5{\times}10^{-6}\;M)$ and atropine $10^{-6}\;M$, or in the presence of dipyridamole $10^{-7}\;M$. 3) The phasic contractions of fundus induced by electrical field stimulation, which disappeared rapidly by the addition of tetrodotoxin $(3{\times}10^{-7}\;M)$, were potentiated by adenosine in the presence of guanethidine. 4) Adenosine decreased the amplitude and the maximum rate of rise of slow waves, and the increased amplitude and rate of rise evoked in the high calcium solution or in the presence of TEA were decreased by adenosine. 5) The non-adrenergic, non-cholinergic inhibitory junction potential (IJP) was inhibited by adenosine in the antral region, while the excitatory junction potential (EJP) in the fundic region was potentiated. From the above results, the following conclusions could be made. 1) Adenosine suppresses the spontaneous contractions of antrum strip by the decrease in amplitude and rate of rise of slow waves. 2) The release of neurotransmitter(s) from non-adrenergic, non-cholinergic nerve terminals is inhibited by adenosine.

  • PDF

Pharmacological Characteristics of Non-cholinergic, Non-adrenergic Inhibitory Responses in Rabbit Portal Vein (가토 문맥에 있어서 비 코린성, 비 아드레나린성 억제성 반응에 관한 약리학적 특징)

  • Jung, Hyun-Ok;Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.25-34
    • /
    • 1983
  • In this isolated study, it was aimed to elucidate the pharmacological properties of non-cholinergic, non-adrenergic inhibitory responses in the longitudinal strips of rabbit portal vein. 1) The portal vein responded inhibitory to electrical field stimulation in a frequency - and calcium-dependent manner after pretreatment with atropine, guanethidine and ergotamine, simultaneously. 2) When exogenous ATP, ADP, adenosine and cyclic AMP were added, respectively, they only showed the relaxations in the higher concentration without mimicing or affecting the inhibitory response induced by the electrical stimulation. The antagonist of purine substances, neither quinine nor isobutyl-methyl xanthine did influence on the relaxation. 3) The inhibitory response was significantly increased in the presence of $1{\mu}g/ml 4-amino-pyrineine (4-AP) which is $K^+-conduction$ blockade, but higher concentration of 4-AP directly decreased the vascular tone. 4) Though repeated application of ATP revealed the inhibitory effect on the relaxation, however, that of adenosine resulted rather increase of the amplitude. 5) After pretreatment with $^3H-adenosine$, $^3H-efflux$ induced by ATP or adenosine was markedly enhanced, but the electrical stimulation caused less $^3H-efflux$. 6) ^3H-efflux by electrical stimulation was not affected by the administration 4-AP, tetrodotoxin and adenosine.

  • PDF

Polyphenols of Rubus coreanum Inhibit Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Yu, Byung-Sik;Na, Duck-Mi;Kang, Mi-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.517-526
    • /
    • 2009
  • The present study was attempted to investigate whether polyphenolic compounds isolated from wine, which is brewed from Rubus coreanum Miquel (PCRC), may affect the release of catecholamines (CA) from the isolated perfused adrenal medulla of the spontaneously hypertensive rats (SHRs), and to establish its mechanism of action. PCRC $(20\sim180\;{\mu}g/ml)$ perfused into an adrenal vein for 90 min relatively dose-dependently inhibited the CA secretory responses to ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. PCRC itself did not affect basal CA secretion (data not shown). Also, in the presence of PCRC $(60\;{\mu}g/ml)$, the CA secretory responses to veratridine (a selective $Na^+$ channel activator $(10\;{\mu}M)$, Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, $10\;{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10\;{\mu}M$) were significantly reduced, respectively. In the simultaneous presence of PCRC $(60\;{\mu}g/ml)$ and L-NAME (an inhibitor of NO synthase, $30\;{\mu}M$), the inhibitory responses of PCRC on the CA secretion evoked by ACh, high $K^+$, DMPP, and Bay-K-8644 were considerably recovered to the extent of the corresponding control secretion compared with that of PCRC-treatment alone. The level of NO released from adrenal medulla after the treatment of PCRC $(60\;{\mu}g/ml)$ was greatly elevated compared with the corresponding basal level. Taken together, these results demonstrate that PCRC inhibits the CA secretion from the isolated perfused adrenal medulla of the SHRs evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of PCRC is mediated by blocking the influx of calcium and sodium into the adrenal medullary chromaffin cells of the SHRs as well as by inhibition of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of NO synthase.

Downward Decrease of Non-adrenergic Non-cholinergic Relaxation in the Rabbit Gastric Body (토끼 위체에서 비-아드레날린 비-콜린성 이완반응의 하행성 감소)

  • Hong, Eun-Ju;Choi, Ji-Eun;Park, Mi-Sun;Kim, Myung-Woo;Choi, Su-Kyung;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.389-398
    • /
    • 1997
  • Non-adenergic non-cholinergic (NANC) innervation on the circular muscle of the rabbit gastric body was investigated by observing the magnitudy of relaxations induced by the elec trical field stimulation (EFS). Strips were cut from the greater curvature of the gastric body and stimulated with 5s trains of 0.5 ms pulses at 1-20 Hz, 40 V. The EFS induced transient frequency-dependent contractons, followed by a slowly recovering relaxation ewpecially at higher frequency of the EFS. In the presence of atropine and guanethidine, the contractions were virtually abolished, while the frequency-dependent relaxations by the EFS remained unaffected. The magnitude of relaxations progressively decreased as the location of the strips gets closer to the bottom of the gastric body. The relaxations were ablished by tetrodotoxin, indicating that their orgin is the NANC nerve stimulation. NG-nitro-L-arginine (L-NNA, 10-$100{\mu}M$), the inhibitor of nitric oxide (NO)-synthase, caused a concentration-dependent inhibition of the NANC relaxations. The inhibitory effects of L-NNA were not affected gy the location of the strips and were reversed by L-arginine, the precursor of NO-biosynthesis. Hemoglobin (20-$60{\mu}M$), a NO scavenger, inhibited the NANC relaxation s in a concentration-dependent manner. This inhibition was more prominent in the NANC relaxations observed in the lower portion of the gastric body and the relaxations induced ly lower frequencies of the EFS. Methyelne blue (10-$100{\mu}M$), an inhibitor of cytosolic guanylate cyclase, markedly inhibited the NANC relaxations, almost abolishing the response at a higher dose ($100{\mu}M$). These results suggest that NANX innervation of the rabbit gastric body progeressively decrease as he location of the strips gets closer to the bottom of the gastric body, and that the NANC relaxation is primarily mediated by NO-guanosine 3',5'-cyclic monophophate (cyclic GMP).

  • PDF

Diagnostic Strategy Using Barium Enema and Rectal Suction Biopsy with Acetylcholinesterase Histochemistry in Neonates with Suspious Hirschsprung's Disease (신생아 Hirschsprung's Disease에서 Barium Enema와 Acetylcholinesterase 조직화검사법을 이용한 진단적 접근)

  • Choi, Young-Il;Choi, Soon-Ok;Park, Woo-Hyun
    • Advances in pediatric surgery
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2001
  • To investigate the diagnostic accuracy and applicability of barium enema(BE) and rectal suction biopsy with acetyl cholinesterase(AChE) histochemistry in the diagnosis of neonatal Hirschsprung's disease(HD), we retrospectively reviewed the findings of BE and AChE staining in 96 neonates with suspected HD during a 10-year period from January 1991 to December 2000. Sixty-nine cases of HD(58 males and 11 females) and 27 cases of non-HD are included in this study. In regard to BE, HD was based on definite transitional zone, suspicious HD on reversed rectosigmoid index(RSI <1), and non-HD on normal RSI(RSI>1). The histochemical criterion used for the diagnosis of HD was that of Chow et al(1977), i.e., the presence of many coarse discrete cholinergic nerve fibers in the muscularis mucosae and in the immediately subjacent submucosa regardless of infiltration of cholinergic nerve fibers in the lamina propria. Of 66 neonates with HD who underwent BE, transitional zone was identified in 33 cases(50 %) and reversed RSI in 19 cases(21 %), microcolon in 4 cases and normal finding in 10 cases(15 %) while of 27 neonates with non-HD, there was normal finding in 16 cases and reversed RSI in 9 cases(41 %). Thus diagnostic accuracy based on transitional zone was 64 %. The positive predictive value of reversed RSI for the diagnosis of HD was 68 %. Of 42 neonates with HD who underwent AChE histochemistry, there were 41 AChE-positive reactions and one AChE-negative reaction in a neonate with total colonic aganglionosis, while of 27 cases of non-HD, there were one equivocal AChE-positive reaction and 26 AChE-negative reactions. Thus AChE histochemical study showed a 97 % diagnostic accuracy with a 98 % sensitivity and a 96 % specificity. In conclusion, we believe that BE is valuable as a first diagnostic step since about 80 % of neonates with HD show significant radiologic findings such as a transitional zone or reversed RSI. AChE histochemical study was a more reliable diagnos tic tool showing a 97 % diagnostic accuracy, and is part.

  • PDF