• Title/Summary/Keyword: Choking Gas

Search Result 29, Processing Time 0.022 seconds

A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle (축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구)

  • Lee Jun-Hee;Woo Sun-Hoon;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

A Study of the Compound Choking Phenomenon in Gas Flows (기체유동에서 발생하는 복합초킹 현상에 관한 연구)

  • Lee, Jun-Hee;Baek, Seung-Cheol;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Compound choking frequently occurs at a minimum area of the flow passage, where two or more streams which have different stagnation properties are merged. This phenomenon is especially important in that the flow choking may not be given by Mach number, M=1 at the nozzle throat. In order to obtain a detailed understanding of the flow characteristics involved in the compound flow choking, the two-dimensional, compressible, Wavier-Stokes equations are solved using a fully implicit finite volume method and the predicted solutions are compared with the results of the one-dimensional theoretical analysis. Stagnation pressure and temperature of each stream are changed to investigate the effects on the compound choking. The results show that stagnation pressures of each stream affect Mach number and static pressure distributions downstream of the exit of the convergent nozzle. However, the flow characteristics of the compound choking are not significantly dependent on the total temperature ratio.

Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • In general, the choking phenomenon occurs due to the flow acceleration of a turbine under high pressure-ratio. During choking, the total pressure ratio increases without any variation in the mass flow rate. It is difficult to predict choking characteristics by using conventional meanline analysis, which utilizes mass flow inlet boundary condition. In this study, an algorithm for predicting the choking point is developed to solve this problem. In addition, a performance estimation algorithm is presented to estimate the performance after choking, based on the flow behavior of flow expansion at the choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate this method.

A Sudden Increase in Combustion Pressure of Gas Generator of Ducted Rocket by Thermal Choking (열 질식에 의한 덕티드 로켓 가스 발생기의 연소 압력 상승)

  • Kim, Doyeong;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.684-691
    • /
    • 2015
  • A sudden increase in combustion pressure is observed in the ducted rocket combustion test equipped with pipe shaped and converging nozzle exhaust tubes. This study aims to understand the physical mechanism of abrupt change in combustion pressure using thermal choking in the exhaust tube. Results confirmed that the thermal choking of the flow inside the exhaust tube was responsible for the sudden increase in combustion pressure. Also, high pressure exponent of solid propellants is critical sensitive to the occurrence of thermal choking exhaust pipe. Additionally, numerical simulation showed that the sudden increase in combustion pressure was less possible in diverging pipe because thermal choking is more reluctant to occur.

Flow Analysis of Check Valve for Hydrogen Vehicle Refueling Line (수소자동차의 연료주입라인용 Check Valve 내의 유동해석)

  • Park, Kyong-Taek;Yeo, Kyeong-Mo;Park, Tae-Jo;Kang, Byeong-Roo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.565-568
    • /
    • 2007
  • The high pressure hydrogen gas refueling system is required for fuel cell vehicle. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is adopted to investigate the gas flow characteristics inside the check valve for various refueling and tank pressures. The results showed that the choking phenomena can occur for certain refueling pressures, therefore refueling processes should be divided by multiple stages. And a design method to prevent the seal departure problem which reported in CNG usages is required.

  • PDF

Analytical Study on the Compressure Flow Through a Double Orifice (이중 Orifice를 지나는 압축성 유동에 관한 해석적 연구)

  • 김희동;김태호;우선훈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.41-47
    • /
    • 1997
  • The flow choking in a double orifice is expected to depend on cross-sectional area ratios of the orifices, upstream Mach number and total pressure loss between the orifices. However, no research has been reported on the problems of the compressible flow through a double orifice so far. The present study investigated analytically the choke conditions of the compressible gas through a double orifice, using a simple compressible theory. The orifice area ratio, upstream Mach number, and total pressure loss were involved to find the effects that they have on the flow choking. The results of analytical method show that for orifice area ratios below 1.0, flow choking moves from the first to the second orifice as the total pressure loss increases, however, for orifice area ratios over 1.0, it occurs only at the second orifice.

  • PDF

Analytical Study on Compressible Flour through Abrupt Enlargement and Contraction (급축소/확대관을 지나는 압축성 유동의 해석적 연구)

  • 김희동;김태호;서태원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.235-244
    • /
    • 1997
  • The empirical factor and reaction force based on published data were involved to investigate compressible flows through sudden enlargement and sudden contraction passages. Analytical solutions of engineering interest were obtained from one-dimensional steady compressible gas dynamic equations. The effects of compressibility, cross-sectional area ratio, and inlet Mach number on the air flows were discussed with regards to the total pressure loss and flow choking. The present results provide available information necessary ta design the compressible pipe flow systems.

  • PDF

ANALYSIS ON COMPRESSIBLE FLOW WITHIN A SWIRL INJECTOR (스월 인젝터 내 압축성 유동 해석)

  • Suh Y.K.;Kang S.M.;Heo H.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.40-48
    • /
    • 2006
  • In the present, The theoretical and numerical results of gas flow characteristics inside a swirl injector are presented. For this purpose a one-dimensional (theoretical) model and 2D/3D CFD models are proposed for use in the design of the injector. It was found that contradictory to the classical theory about the compressible flow, the swirl has a significant effect on the mass flow rate and the choking conditions. It was found that the one-dimensional model provides reasonably accurate results compared with the 2D/3D numerical results, and thus can be used at the initial stage of the swirl-injector design process.

Study on Compressible Swirl Flow within an Injector (분사기 내 압축성 스월 유동에 대한 연구)

  • Suh Y. K.;Kang S. M.;Heo H. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.207-212
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of flow characteristics of a gas in a swirl injector. Proposed in this study are one-dimensional (theoretical) model and 2D/3D CFD models for use in the design of the injector. It was found that contrary to the classical theory about the compressible flow, the swirl gives a significant effect on the mass flow rate and the choking conditions. The one-dimensional model was found to Provide reasonably accurate results compared with the 2D/3D numerical results, so that it can be employed in th initial stage of the swirl-injector design process.

  • PDF

Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect (탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가)

  • Lee, Chan;Kim, Yong Chul;Lee, Jin Wook;Kim, Hyung Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF