• Title/Summary/Keyword: Choice prediction

Search Result 153, Processing Time 0.031 seconds

Application of a Hybrid System of Probabilistic Neural Networks and Artificial Bee Colony Algorithm for Prediction of Brand Share in the Market

  • Shahrabi, Jamal;Khameneh, Sara Mottaghi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.324-334
    • /
    • 2016
  • Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.

Development of Coil Breakage Prediction Model In Cold Rolling Mill

  • Park, Yeong-Bok;Hwang, Hwa-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1343-1346
    • /
    • 2005
  • In the cold rolling mill, coil breakage that generated in rolling process makes the various types of troubles such as the degradation of productivity and the damage of equipment. Recent researches were done by the mechanical analysis such as the analysis of roll chattering or strip inclining and the prevention of breakage that detects the crack of coil. But they could cover some kind of breakages. The prediction of Coil breakage was very complicated and occurred rarely. We propose to build effective prediction modes for coil breakage in rolling process, based on data mining model. We proposed three prediction models for coil breakage: (1) decision tree based model, (2) regression based model and (3) neural network based model. To reduce model parameters, we selected important variables related to the occurrence of coil breakage from the attributes of coil setup by using the methods such as decision tree, variable selection and the choice of domain experts. We developed these prediction models and chose the best model among them using SEMMA process that proposed in SAS E-miner environment. We estimated model accuracy by scoring the prediction model with the posterior probability. We also have developed a software tool to analyze the data and generate the proposed prediction models either automatically and in a user-driven manner. It also has an effective visualization feature that is based on PCA (Principle Component Analysis).

  • PDF

Prediction method of slope hazards using a decision tree model (의사결정나무모형을 이용한 급경사지재해 예측기법)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1365-1371
    • /
    • 2008
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model. The slope hazards data of Seoul and Kyonggi Province were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. The statistical analyses using the decision tree model were applied to the entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320m, respectively.

  • PDF

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun;Jeon, Jou-Hyun;Kim, Sang-Uk
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.697-704
    • /
    • 2009
  • Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

EWMA Based Fusion for Time Series Forecasting (시계열 예측을 위한 EWMA 퓨전)

  • Shin, Hyung Won;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this paper, we propose a new data fusion method to improve the performance of individual prediction models for time series data. Individual models used are ARIMA and neural network and their results are combined based on the weight reflecting the inverse of EWMA of squared prediction error of each individual model. Monte Carlo simulation is used to identify the situation where the proposed approach can take a vintage point over typical fusion methods which utilize MSE for weight. Study results indicate the following: EWMA performs better than MSE fusion when the data size is large with a relatively big amplitude, which is often observed in intra-cranial pressure data. Additionally, EWMA turns out to be a best choice among MSE fusion and the two individual prediction models when the data size is large with relatively small random noises, often appearing in tax revenue data.

A Graphical Method for Evaluating the Effect of Blocking in Response surface Designs Using Cuboidal Regions

  • Sang-Hyun Park;Dae-Heung Jang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.607-621
    • /
    • 1998
  • When fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance even if the experimental runs are the same. Therefore, care should be exercised in the selection of blocks. In this paper, we prognose a graphical method for evaluating the effect of blocking in a response surface designs using cuboidal regions in the presence of a fixed block effect. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout the entire experimental region of interest when this region is cuboidal, and compare the block effect in the cases of the orthogonal and non-orthogonalblockdesigns, resfectively.

  • PDF

A Conceptual Framework of an Agent-Based Space-Use Prediction Simulation System

  • Cha, Seung Hyun;Kim, Tae Wan
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.12-15
    • /
    • 2015
  • Size of building has a direct relationship with building cost, energy use and space maintenance cost. Therefore, minimizing building size during a project development is of paramount importance against such wastes. However, incautious reduction of building size may result in crowded space, and therefore harms the functionality despite the fact that building is supposed to satisfactorily support users' activity. A well-balanced design solution is, therefore, needed at an optimum level that minimizes building size in tandem with providing sufficient space to maintain functionality. For such design, architects and engineers need to be informed accurate and reliable space-use information. We present in this paper a conceptual framework of an agent-based space-use prediction simulation system that provides individual level space-use information over time in a building in consideration of project specific user information and activity schedules, space preference, ad beavioural rules. The information will accordingly assist architects and engineers to optimize space of the building as appropriate.

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

The Effect of Data Sparsity on Prediction Accuracy in Recommender System (추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구)

  • Kim, Sun-Ok;Lee, Seok-Jun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recommender System based on the Collaborative Filtering has a problem of trust of the prediction accuracy because of its problem of sparsity. If the sparsity of a preference value is large, it causes a problem on a process of a choice of neighbors and also lowers the prediction accuracy. In this article, a change of MAE based on the sparsity is studied, groups are classified by sparsity and then, the significant difference among MAEs of classified groups is analyzed. To improve the accuracy of prediction among groups by the problem of sparsity, We studied the improvement of an accurate prediction for recommending system through reducing sparsity by sorting sparsity items, and replacing the average preference among them that has a lot of respondents with the preference evaluation value.

  • PDF

Choice of Thresholding Technique in Micro-CT Images of Trabecular Bone Does Not Influence the Prediction of Bone Volume Fraction and Apparent Modulus

  • Kim, Chi-Hyun;Kim, Byung-Gwan;Guo, X. Edward
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.174-177
    • /
    • 2007
  • Trabecular bone can be accurately represented using image-based finite element modeling and analysis of these bone models is widely used to predict their mechanical properties. However, the choice of thresholding technique, a necessary step in converting grayscale images to finite element models which can thus significantly influence the structure of the resulting finite element model, is often overlooked. Therefore, we investigated the effects of thresholding techniques on micro-computed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to micro-CT images of trabecular bone which resulted in three unique finite element models for each specimen. Bone volume fractions and apparent moduli were predicted for each model and compared to experimental results. Our findings suggest that predictions of apparent properties agree well with experimental measurements regardless of the choice of thresholding technique in micro CT images of trabecular bone.