• Title/Summary/Keyword: Choice prediction

Search Result 153, Processing Time 0.021 seconds

Satellite Monitoring and Prediction for the Occurrence of the Red Tide in the Middle Coastal Area in the South Sea of Korea

  • Yoon, Hong-Joo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • It was studied the relationship between the red tide occurrence and the meteorological and oceanographic factors, the choice of potential area for red tide occurrence, and the satellite monitoring for red tide. From 1990 through 2001, the red tide continuously appeared and the number of red tide occurrence increased every year. Then, the red tide bloomed during the periods of July and August. An important meteorological factor governing the mechanisms of the increasing in number of red tide occurrence was heavy precipitation. Oceanographic factors of favorable marine environmental conditions for the red tide formation included warm water temperature, low salinity, high suspended solid, low phosphorus, low nitrogen. A common condition for the red tide occurrence was heavy precipitation 2∼4 days earlier, and the favorable conditions for the red tide formation were high air temperature, proper sunshine and light winds for the day in red tide occurrence. From satellite images, it was possible to monitor the spatial distributions and concentrations of red tide. It was founded the potential areas for red tide occurrence in August 2000 by CIS conception: Yeosu∼Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, Deukryang bay, respectively.

A Study of Correlation Analysis between Increase / Decrease Rate of Tweets Before and After Opening and a Box Office Gross (개봉 전후 트윗 개수의 증감률과 영화 매출간의 상관관계)

  • Park, Ji-Yun;Yoo, In-Hyeok;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.169-182
    • /
    • 2017
  • Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Bayesian approach for prediction of primary water stress corrosion cracking in Alloy 690 steam generator tubing

  • Falaakh, Dayu Fajrul;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3225-3234
    • /
    • 2022
  • Alloy 690 tubing has been shown to be highly resistant to primary water stress corrosion cracking (PWSCC). Nevertheless, predicting the failure by PWSCC in Alloy 690 SG tubes is indispensable. In this work, a Bayesian-based statistical approach is proposed to predict the occurrence of failure by PWSCC in Alloy 690 SG tubing. The prior distributions of the model parameters are developed based on the prior knowledge or information regarding the parameters. Since Alloy 690 is a replacement for Alloy 600, the parameter distributions of Alloy 600 tubing are used to gain prior information about the parameters of Alloy 690 tubing. In addition to estimating the model parameters, analysis of tubing reliability is also performed. Since no PWSCC has been observed in Alloy 690 tubing, only right-censored free-failure life of the tubing are available. Apparently the inference is sensitive to the choice of prior distribution when only right-censored data exist. Thus, one must be careful in choosing the prior distributions for the model parameters. It is found that the use of non-informative prior distribution yields unsatisfactory results, and strongly informative prior distribution will greatly influence the inference, especially when it is considerably optimistic relative to the observed data.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.

A comparative study of conceptual model and machine learning model for rainfall-runoff simulation (강우-유출 모의를 위한 개념적 모형과 기계학습 모형의 성능 비교)

  • Lee, Seung Cheol;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.563-574
    • /
    • 2023
  • Recently, climate change has affected functional responses of river basins to meteorological variables, emphasizing the importance of rainfall-runoff simulation research. Simultaneously, the growing interest in machine learning has led to its increased application in hydrological studies. However, it is not yet clear whether machine learning models are more advantageous than the conventional conceptual models. In this study, we compared the performance of the conventional GR6J model with the machine learning-based Random Forest model across 38 basins in Korea using both gauged and ungauged basin prediction methods. For gauged basin predictions, each model was calibrated or trained using observed daily runoff data, and their performance was evaluted over a separate validation period. Subsequently, ungauged basin simulations were evaluated using proximity-based parameter regionalization with Leave-One-Out Cross-Validation (LOOCV). In gauged basins, the Random Forest consistently outperformed the GR6J, exhibiting superiority across basins regardless of whether they had strong or weak rainfall-runoff correlations. This suggest that the inherent data-driven training structures of machine learning models, in contrast to the conceptual models, offer distinct advantages in data-rich scenarios. However, the advantages of the machine-learning algorithm were not replicated in ungauged basin predictions, resulting in a lower performance than that of the GR6J. In conclusion, this study suggests that while the Random Forest model showed enhanced performance in trained locations, the existing GR6J model may be a better choice for prediction in ungagued basins.

Estimating Interregional Trade Coefficient of Service Industry using the Gravity Model (중력모형을 이용한 서비스업의 지역간 교역계수 추정)

  • Yun, Kap-Sik;Kim, Jae-Koo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.457-469
    • /
    • 2010
  • The study aims to estimate interregional trade coefficient of service industry using the gravity model. The gravity model has been widely used for prediction of the level of human interaction between two regions which is positively related to attraction of them and negatively related to the distance between them. To apply the gravity model for explaining the interregional trade flow of service industry, the choice of proper proxy variables which represent a dependent variable and independent variables is most important. However, the literature shows that there are few studies on this issue. Four models concerned to the choice of proxy variables are considered. Finally, this paper employs the least-squares regression analysis to test the model's goodness-of-fit, and suggests the most appropriate model based on the result from the analysis. The result shows that the interregional trade of service industry in regional input-output table developed by The Bank of Korea is desirable as a dependent variable, the service industry output of export region, the population of import region, and the spatial distance between regions are desirable as independent variables.

  • PDF