• Title/Summary/Keyword: Chloroaniline

Search Result 24, Processing Time 0.027 seconds

Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment (연안 갯벌에서 분리한 Chloroaniline 화합물 분해 미생물의 특징)

  • Kang, Min-Seung;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.5
    • /
    • pp.282-287
    • /
    • 2007
  • Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.

ANALYSIS OF PARA-CHLOROANILINE AFTER CHEMICAL INTERACTION BETWEEN ALEXIDINE AND SODIUM HYPOCHLORITE USING MASS SPECTROMETRY (알렉시딘과 차아염소산나트륨의 화학적 상호반응 후 mass spectrometry를 이용한 파라클로로아닐린의 검출 분석)

  • Kim, Hyeon-Sik;Han, Seung-Hyun;Oh, So-Ram;Lim, Sang-Min;Gu, Yu;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Recent studies demonstrated that the combination of chlorhexidine (CHX) and sodium hypochlorite (NaOCl) resulted in the formation of a precipitate, para-chloroaniline (PCA). Alexdidine (ALX) is a kind of biguanides like CHX, and has stronger detoxification effect against the bacterial virulence factors such as lipoteichoic acid and lipopolysacchardide compared with CHX. The purpose of this study was to determine whether PCA was formed after chemical interaction between ALX and NaOCl using mass spectrometry. Mass spectrometry was performed for the mixture of five different concentrations of ALX (1, 0.5, 0.25, 0.125, 0.0625%) and 4% NaOCl. Results showed that the peak of PCA was not detected in mixed solutions of ALX and NaOCl in mass spectrometry analysis. The color of mixed solution of ALX and NaOCl after chemical interaction was light yellow to white, but there wasn't any precipitate found.

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria from a Sandbank (갯벌에서 분리한 3,4-Dichloroaniline 분해 미생물의 특성)

  • Kim, Young-Mog
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.275-281
    • /
    • 2006
  • The compound 3,4-dichloroaniline (DCA) is an aromatic amine used as an intermediate product in the synthesis of herbicides, azo-dyes and harmaceuticals. It is also a degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as active agent in the cosmetic industry. 3,4-DCA, however, is considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. A bacterium capable of growth on 3,4-DCA was isolated by dilution method from 3,4-DCA-containing enrichment culture. Finally, a strain, YM-14, capable of degrading efficiently 3,4-DCA was isolated from a sandbank. The isolated strain, YM-14 was identified to be Arthrobacter sp.. Fifty ppm 3,4-DCA in 1/10 LB media was completely degraded by the growth of Arthrobacter sp. YM-14 for 12 h at $30^{\circ}C$. The isolated strain is capable of growth on 3,4-DCA as sole carbon source and also able to degrade other chloroaniline compounds. Also, the isolated strain showed high level of catechol 1,2-dioxygenase activity by 3,4-DCA exposure. The catechol 1,2-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation.

  • PDF

Influence of Solvents on Rates of Reactions of 2,4-Dinitro Substituted Halobenzenes with Substituted Anilines (I) (2,4-이니트로 할로벤젠과 치환된 아닐린의 반응속도에 대한 용매효과 (제1보))

  • Hai Whang Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 1977
  • Kinetic studies on the rates of reactions of 2, 4-dinitrochlorobenzene with p-toluidine, aniline and p-chloroaniline in $CH_3CH-CH_3OH$ binary solvent mixtures have been carried out. The experimental results have been explained in terms of the specific solvation by alcoholic hydrogen. It has been shown that the bond breaking step is rate determining in the solvent system studied and the energy barrier is getting low as the solvent changes from acetonitrile to methanol.

  • PDF

Cataytic Hydrogenation of o-Nitrochlorbenzene to 3,3'-Dichlorobenzidine

  • Shen, Kaihua;Li, Shude;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1785-1789
    • /
    • 2002
  • 2,2'-Dichlorohydroazobenzene was prepared by selective hydrogenation of o-nitrochlorobenzene with hydrogen in the presence of 0.8% and 5% Pd/C catalyst. O-Chloroaniline was a minor product in the catalytic hydrogenation of o-nitrochlorobenzene. The effects of base, Pd/C catalyst, and co-catalyst were discussed on catalytic hydrogenation. 2,2'-Dichlorohydroazobenzene, as an intermediate, was rearranged to 3,3'-dichlorobenzidine after reacting with HCl. It was shown that selectivity of catalytic hydrogenation of o-nitro-chlorobenzene is affected strongly by concentration of base, Pd/C catalyst, and co-catalyst. $^1Hand^{13}C$NMR spectroscopy confirmed the chemical structures of 2,2'-dichlorohydrazobenzene and 3,3'-dichlorobenzidine.

Synthesis and Biological Evaluation of New Allylamine Antimycotics (새로운 알릴아민 항진균제의 합성과 생물학적 평가)

  • Jeong, Byeong-Ho;Park, Eun-Ju;Mun, Hyeon-Ju;Yu, Jin-Cheol
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.507-512
    • /
    • 1996
  • Some allylamine compounds which are benzothiazole substituants in stead of naphthyl ring in naftifine, antifungal agents, were synthesized as potential antimycotics. The interme diate Schiff bases that were obtained by condensation of 2-aminobenzothiazole and trans-cinnamaldehyde, were reduced to imine compounds to give allylamines (5a-5d) after methylation. These compounds which were tested in vitro against five fungal cell lines containing Trichophyton mentagrophytes, showed no activity in 0.1~100${\mu}$g/ml range.

  • PDF

Synthesis of Anticoagulant 3-(N-Arylamino)-1,4-Naphthoquinones(II) (항응고성의 3-(N-Arylamino)-1,4-Naphthoquinone 유도체 합성(II))

  • Ryu, Chung-Kyu;Oh, Jae-Don;Suh, Myung-Eun
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.273-279
    • /
    • 1989
  • 2,3-Dichloro-1,4-naphthoquinone was reacted with o-fluoroaniline, p-sulfadiazine, p-acetoanline, N,N-dimethyl-1,4-phenylenediamine as a nucleophilic substitution to form 2-chloro-3-(N-arylamino)-1,4-naphthoquinones (1.-6.) in good yield. 2,3-Dibromo-1,4-naphthoquinone was also reacted with o-fluoroaniline, m-aminobenzoic acid, m-chloroaniline, morpholine, p-acetoaniline, N,N-dimethyl-1,4-phenylenediamine as a nucleophilic substitution to give 2-bromo-3-(N-arylamino)-1,4-naphthoquinones (7.-12.). These new compounds are expected to have a biological activities such as anticoagulant, cytotoxic.

  • PDF

Investigation of Herbicide Safeners and its Mode of Safening Action Ⅰ. Effect of N-(4-chlorophenyl)maleimide on Metolachlor Absorption and Metabolism (제초제(除草劑) 약해경감물질(藥害輕減物質) 탐색(探索)과 작용기구(作用機構) 규명(糾明) Ⅰ. Metolachlor 흡수(吸收) 및 대사(代謝)에 대한 N-(4-chlorophenyl)maleimide의 효과(效果))

  • Chun, Jae-Chul;Ma, Sang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.271-278
    • /
    • 1994
  • Mode of safening action of N-(4-chlorophenyl)maleimide (CPMI) on metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-l-methylethyl) acetamide] was investigated in sorghum(Sorghum bicolor L.). CPMI was synthesized by dehydration of N-(4-chlorophenyl)maleamic acid (CPMA) which was obtained from amination with maleic anhydride and 4-chloroaniline. Melting points of CPMA and CPMI (>95% purity) were $200-202^{\circ}C$ and $116-118^{\circ}C$, respectively. Growth response study indicated that seed treatment of CPMI increased tolerance of sorghum shoot to metolachlor approximately threefold. Sorghum shoot was more sensitive to injury caused by metolachlor and CPMI activity than the root. Metolachlor was initially absorbed by sorghum shoot and metabolized to the metolachlor-glutathione conjugate in CPMI-untreated and treated shoots. However, CPMI treatment significantly accelerated metabolism of $[^{14}C]$metolachlor in sorghum shoot, resulting in decrease in metolachlor content and increase in formation of the glutathione conjugate. It was concluded that the protection against metolachlor injury conferred by CPMI appeared to be correlated to detoxification of metolachlor in sorghum shoot tissue.

  • PDF

Determination of hazardous semi-volatile organic compounds in industrial wastewater using disk-type solid-phase extraction and GC-MS (디스크형 고상 추출법과 GC/MS를 이용한 공장폐수 중 반휘발성유기화합물질 분석)

  • Lee, In-Jung;Lim, Tae-Hyo;Heo, Seong-Nam;Nam, Su-Gyeong;Lee, Jae-Gwan;Cheon, Se-Uk
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.236-241
    • /
    • 2012
  • There are many industrial factories in the central Nakdong river basin and have been occurred water pollution accidents by hazardous chemicals such as phenol, 1,4-dioxane and perchlorate. In this study, ten compounds of semi-volatile organic compounds (SVOCs) (dichlorvos, toluene-2,4-diisocyanate, 4,4'-methylenedianiline, 4,4'-methylenebis (2-chloroaniline), diethyl phthalate, di-n-butyl phthalate, butyl benzyl phthaltate, bis (2-ethylhexyl) adipate, benzophenone, 4,4'-bisphenol A) of hazardous chemicals which may be potentially discharged into the Nakdong river, were determined by gas chromatography-mass spectrometry (GC-MS) with disk-type solid-phase extraction. Accuracy and precision were in the range of 75.6~110.5%, and 4.6~12.7%, respectively and recovery was in the range of 72.4~127.9%. Three compounds (bis (2-ethylhexyl)adipate, benzophenone, 4,4'-bisphenol A) were detected in industrial wastewater such as wastewater treatment plants (WWTPs) and wastewater discharge facilities in the Nakdong River basin.