• Title/Summary/Keyword: Chlorine corrosion

Search Result 85, Processing Time 0.019 seconds

Effects of Alkali Metals and Chlorine on Corrosion of Super Heater Tube in Biomass Circulating Fluidized Bed Boiler (순환유동층보일러의 과열기 튜브 부식에 알칼리 금속과 염소가 미치는 영향)

  • Back, Seung-Ki;Yoo, Heung-Min;Jang, Ha-Na;Joung, Hyun-Tae;Seo, Yong-Chil
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This study provides the identification of corrosion cause substances in super heater tube from a commercial scale circulating fluidized bed boiler. Electricity is produced by the combustion of biomass mainly wood waste. The biomass, super heater tube, super heater tube ash, and boiler ash were collected and components associated with corrosion were analyzed. A large amount of oxygen-containing material was found due to oxidation. The chlorine content was analyzed as 6.1% and 4.3% in super heater tube ash and boiler ash respectively which were approximately 20 and 14 times higher than those of designed values. Also, alkaline metal contents (K, Na, Ca) were very high in ash samples collected from super heater tube and boiler. The tendency of slagging and fouling was predicted based on X-Ray Fluorescence (XRF) results. Basicity that can lead to slagging was estimated as 3.62 and 2.72 in super heater tube and boiler ash, respectively. Slagging would occur with ash content when considering the designed value as 0.35.

A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation (발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구)

  • KIM, JI-HUN;PARK, JAE-HEUN;CHOI, JAE-HYUN;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

A Study on Corrosion Resistance of CA2-Mixed Paste (CA2 혼입 페이스트의 부식저항성에 관한 연구)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.289-297
    • /
    • 2022
  • Deterioration in durability of structures due to the steel corrosion is difficult to determine whether or not corrosion is initiated and how much propagated, and moreover, repair and maintenance are not easy to deal with. Therefore, preventive treatments can be the best option to avoid the deterioration. Various methods for preventing corrosion of steel, such as electrochemical treatments, anti-corrosion agents and steel surface coatings, are being developed, but economic and environmental aspects make it difficult to apply them to in-situ field. Thus, the purpose of this study was to improve corrosion resistance by using CA-based clinker that are relatively simple and expected to be economically profitable Existing CA-based clinkers had problems such as flash setting and low strength development during the initial hydration process, but in order to solve this problem, CA clinker with low initial reactivity were used as binder in this study. The cement paste used in the experiments was replaced with CA2 clinker for 0%, 10%, 20%, and 30% in OPC. And the mixture used in the chloride binding test for the extraction of water-soluble chloride was intermixed with Cl- 0.5%, 1%, 2%, and 3% by weight of binder content. To evaluate characteristic of hydration heat evolution, calorimetry analysis was performed and simultaneously chloride binding capacity and acid neutralization capacity were carried out. The identification of hydration products with curing ages was verified by X-ray diffraction analysis. The free chloride extraction test showed that the chlorine ion holding ability improved in order OC 10 > OC 30 > OC 20 > OC 0 and the pH drop resistance test showed that the resistance capability in pH 12 was OC 0 > OA 10 > OA 20 > OA 30. The XRD analyses showed that AFm phase, which can affect the ability to hold chlorine ions, tended to increase when CA2 was mixed, and that in pH12 the content of calcium hydroxide (Ca(OH)2), which indicates pH-low resistance, decreased as CA2 was mixed

The Effects of Fluorine Passivation on $SF_6$ Treatment for Anti-corrosion after Al(Cu 1%) Plasma Etching (Al(Cu 1%)막의 플라즈마 식각후 부식 억제를 위한 $SF_6$ 처리시 fluorine passivation 효과)

  • 김창일;권광호;백규하;윤용선;김상기;남기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, the $SF_6$ plasma treatment subsequent to the etch has been carried out. A passivation layer is formed by fluorine-related compounds on etched Al-Cu alloy surface after $SF_6$ treatment, and the layer suppresses effectively the corrosion on the surface as the RF power of $SF_6$ treatment increases. The corrosion could be suppressed successfully with $SF_6$ treatment in the RF power of 150watts.

  • PDF

A Study on the Process Conditions Optimization for Al-Cu Metal Line Corrosion Improvement (Al-Cu 금속 배선 부식 개선을 위한 공정조건 최적화에 관한 연구)

  • Mun, Seong Yeol;Kang, Seong Jun;Joung, Yang Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2525-2531
    • /
    • 2012
  • Al-Cu alloy has been used as a circuit material for its low resistance and ease to process for long years at CMOS technology. However, basically metal is very susceptible to corrosion and which has been a long pending trouble in various fields using metal. The defect causes the reliability concerns, so improved methods are necessary to reduce the defect. In the various corrosion parameters, PR strip process conditions after metal etch and optimal cleaning solutions are controllable and increase the process margin to prevent the metal corrosion. This study proposes that chlorine residue after metal etch as the source of metal corrosion, and charges should be removed by optimizing PR strip process condition and cleaning condition.

Corrosion Behavior of Inconel X-750 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.355-362
    • /
    • 2020
  • The corrosion behavior of the Inconel X-750 alloy was investigated for its potential application under a Cl2-O2 mixed gas flow in an Ar atmosphere. The corrosion rate was found to be negligible at temperatures up to 400℃ under a flow rate of 30 mL·min-1 Cl2 + 170 mL·min-1 Ar, whereas an exponential increase was observed in the corrosion rate at temperatures greater than 500℃. The suppression of the corrosion reaction due to the presence of O2 was verified experimentally at flow rates of 30 mL·min-1 Cl2 (4.96 g·m-2·h-1), 20 mL·min-1 Cl2 + 10 mL·min-1 O2 (2.02 g·m-2 ·h-1), and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 (1.34 g·m-2·h-1) under a constant Ar flow rate of 170 mL·min-1 at 600℃ for 8 h. The surface morphology analysis results revealed that porous surfaces with tunnel-type holes were produced under the Cl2-O2 mixed-gas condition. Furthermore, the effects of the Cl2 flow rate on the corrosion rate were investigated, indicating that its impact was negligible within the range of 5-30 mL·min-1 Cl2 at 600℃.

An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete (콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구)

  • Lee, Hyun-Seok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.143-152
    • /
    • 2014
  • In this study, the sensor response and sensitivity is experimented and analyzed quantitatively by the line numbers of chlorine ion reaction type corrosion sensor that is developed. The sensor response of the developed corrosion sensor is verified with properties of chlorine ion. The multilineal sensor is shown a large resistance change more than the single line sensor by damage of the sensor. And, the resistance change of sensor is as large as high concentration of NaCl aqueous solution, the sensitivity of multilineal sensor is higher than single line sensor's, and the depth of sensor's location is as large as the increasing of resistance change time (cycle). These results suggest that, the developed corrosion sensor could sense corrosion reaction, sensor sensitivity and change of resistance for chloride ion. Especially, It was judged that 7 line sensor was the most superior for monitoring chloride ion immigration into concrete.

Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

  • Tran, Thi Ngoc Lan;Nguyen, Thi Thanh Binh;Nguyen, Nhi Tru;Yoshino, Tsujino;Yasuki, Maeda
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time.

The Effect of the Anti-corrosion by$CHF_3$ Treatment after Plasma Etching of Al Alloy Films (Al 합금막의 식각후 $CHF_3$ 처리에 의한 부식억제 효과)

  • 김창일;권광호;윤용선;백규하;남기수;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.517-521
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS(X-ray pheotoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, $CHF_3$ plasma treatment subsequent to the etch has been carried put. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after $CHF_3$ treatment, and the layer suppresses effectively the corrosion on the surface as the $CHF_3$treatment in the pressure of 300m Torr.

  • PDF

A study of the fluorine treatment for the anti-corrosion after plasma etching of AlCu films (AlCu 배선의 부식방지를 위한 fluorine 가스 처리연구)

  • 김창일;서용진;권광호;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.383-386
    • /
    • 1998
  • After etching Al-Cu alloy films using SiC1$_4$/Cl$_2$/He/CHF$_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, CHF$_3$ plasma treatment subsequent to the etched has been carried out. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after CHF$_3$ and SF$_{6}$ treatment, and the layer supresses effectively the corrosion on the surface as the CHF$_3$ and SF$_{6}$ treatment pressure increases. The corrosion could be suppressed successfully with CHF$_3$ and SF6 treatment in the pressure of 300mTorr.orr.

  • PDF