• Title/Summary/Keyword: Chloride secretion

Search Result 56, Processing Time 0.025 seconds

Suppressive Impact of Ginsenoside-Rg2 on Catecholamine Secretion from the Rat Adrenal Medulla

  • Ha, Kang-Su;Kim, Ki-Hwan;Lim, Hyo-Jeong;Ki, Young-Jae;Koh, Young-Youp;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.86-98
    • /
    • 2021
  • This study was designed to characterize the effect of ginsenoside-Rg2 (Rg2), one of panaxatriol saponins isolated from Korean ginseng root, on the release of catecholamines (CA) in the perfused model of the rat adrenal medulla, and also to establish its mechanism of action. Rg2 (3~30 µM), administered into an adrenal vein for 90 min, depressed acetylcholine (ACh)-induced CA secretion in a dose- and time-dependent manner. Rg2 also time-dependently inhibited the CA secretion induced by 3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyltrimethyl ammonium chloride (McN-A-343), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), and angiotensin II (Ang II). Also, during perfusion of Rg2, the CA secretion induced by high K+, veratridine, cyclopiazonic acid, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644) depressed, respectively. In the simultaneous presence of Rg2 and Nω-nitro-L-arginine methyl ester hydrochloride ʟ-NAME), the CA secretion induced by ACh, Ang II, Bay-K-8644 and veratridine was restored nearly to the extent of their corresponding control level, respectively, compared to those of inhibitory effects of Rg2-treatment alone. Virtually, NO release in adrenal medulla following perfusion of Rg2 was significantly enhanced in comparison to the corresponding spontaneous release. Also, in the coexistence of Rg2 and fimasartan, ACh-induced CA secretion was markedly diminished compared to the inhibitory effect of fimasartan-treated alone. Collectively, these results demonstrated that Rg2 suppressed the CA secretion induced by activation of cholinergic as well as angiotensinergic receptors from the perfused model of the rat adrenal gland. This Rg2-induced inhibitory effect seems to be exerted by reducing both influx of Na+ and Ca2+ through their ionic channels into the adrenomedullary cells as well as by suppressing Ca2+ release from the cytoplasmic calcium store, at least through the elevated NO release by activation of NO synthase, which is associated to the blockade of neuronal cholinergic and AT1-receptors. Based on these results, the ingestion of Rg2 may be helpful to alleviate or prevent the cardiovascular diseases, via reduction of CA release in adrenal medulla and consequent decreased CA level in circulation.

Cyanidin 3 - rutinoside chloride (CRC) Regulates Pro-inflammatory Mediators in PMACI-stimulated HMC-1 Cells

  • Jeon, Yong-deok;AYE, AYE;Song, Young-Jae;Soh, Ju-Ryoun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.106-106
    • /
    • 2018
  • Cyanidin 3 - rutinoside chloride (CRC) is major anthocyanin, found in Schisandra chinensis, is known to have antioxidant, anticancer, anti-inflammatory, tonic, and anti-aging effects in Korea, China and Japan. In the present study, the human mast cell line (HMC-1) was used to investigate the effects on the production of pro-inflammatory mediators. In this study, CRC showed no cytotoxicity in HMC-1. CRC significantly inhibited the secretion of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6 in PMA plus A23187 cacium ionophore (PMACI)-stimulated HMC-1 cells. In addition, CRC suppressed the serum levels of IgE. Furthermore, CRC decreased the PMACI- stimulated phosphorylation of mitogen activated protein kinases (MAPKs) such as p-ERK, p- JNK and p-P38. These results indicate that the pharmacological actions of CRC suggest their potential activity for treatment of allergic inflammation through the down-regulation of mast cell activation.

  • PDF

Influence of Bromocriptine on Release of Norepinephrine and Epinephrine Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Lee, Seung-Il;Kang, Moo-Jin;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • The present study was conducted to examine the effects of cholinergic stimulation and membrane depolarization on secretion of epinephrine (EP) and norepinephrine (NE) in the perfused model of the rat adrenal gland and to investigate the effect of bromocriptine on secretion of EP and NE evoked by these secreta-gogues. Acetylcholine (ACh, 5.32 mM), high $K^{+}$(56mM), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP, 100 $\mu$M for 2 min), (3-(m-cholro-phenyl-carbamoyl-oxy)-2butynyl trimethyl ammonium chloride (McN-A-343, 100 $\mu$M for 2 min), cyclopiazonic acid (10 $\mu$M for 4 min) and methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) -pyridine-5-carboxylate (Bay-K-8644, 10 $\mu$M for 4 min) evoked a 1.3~5.3-fold greater secretion of EP than NE in the perfused rat adrenal gland. The perfusion of bromocriptine (1-10 $\mu$M) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in secretion of EP and NE evoked by ACh, high $K^{+}$, DMPP, and McN-A-343. Moreover, under the presence of bromocriptine (1~10 $\mu$M), releasing responses of EP and NE evoked by cyclopiazonic acid and Bay-K-8644 were also greatly reduced. Taken together, these results suggest that cholinergic stimulation and membrane depolarization enhance more release of EP than NE in the perfumed rat adrenal medulla, and that bromocriptine inhibits the release of EP and NE evoked by stimulation of cholinergic receptors as well as by membrane depolarization. It seems that this inhibitory effect of bromocriptine is associated with inhibition of calcium channels through activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells.lls.

  • PDF

An experimental study on the effect of Samchulgunbitang affecting gastro-intestine and central nervous system (삼출건비탕(蔘朮健脾湯)이 위장관(胃腸管)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Tae-Gyun;Ko, Seong-Gyu;Baik, Tae-Hyeun
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • An experimental study was done to investigate the spontaneous movements to the isolated ileum with liquid extracts of Samchulgunbitang. Then the action of gastric ulcer, gastric-juice secretion, the free acidity, total acidity, pepsin output, the transport ability in the intestine, analgesic effect and sleeping time were measured. The following results were obtained; 1. As to the spontaneous movements in the isolated ileum, the effect of contraction against suppression was recognized. 2. The effects of contraction against suppression induced by acetylcholine chloride and barium chloride were recognized on the gastric funds strip significantly. 3. The preventive effect of Samchulgunbitang on the pylorus-lightedulcer in rat was recognized significantly. 4. The anti-ulcer effect of Samchulgunbitang was not recognized on the gastric ulcer caused by indomethacin. 5. The effects of decreasing on the secretion gastric juice, the free acidity, total acidity and pepsin output of Samchulgunbitang were recognized significantly. 6. The transport rate in the small intestine of Samchulgunbitang was decreased. 7. The transport rate in the large intestine of Samchulgunbitang was increased. 8. The analgesic effect of Samchulgunbitang caused by acetic acid was recognized significantly. 9. The sleeping time caused by pentobarbital-Na of Samchulgunbitang was prolonged significantly. According to the results, it is considered that the Samchulgunbitang has effects of gastric ulcer, chronic gastritis, hyper-acidity, gastroptosis such as abdominal discomfort, gastric acid, indigestion and anorexia.

  • PDF

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

Studies on Secretion of Catecholamines Evoked by Metoclopramide of the Rat Adrenal Gland (흰쥐 적출 부신에서 Metoclopramide의 Catecholamine 분비작용에 관한 연구)

  • Lim, Dong-Yoon;Kim, Kyu-Hyeong;Choi, Cheol-Hee;Yoo, Ho-Jin;Choi, Dong-Joon;Lee, Eun-Hwa
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.31-42
    • /
    • 1989
  • The effect of metoclopramide (MCP), which is well-known as a selective dopaminergic antagonist used in treating esophageal refulx, gastroparesis and emesis induced by anticancer chemotherapy, on secretion of catecholamines (CA) in the perfused isolated rat adrenal gland was investigated. MCP given into an adrenal vein produced the dose-related increase in CA secretion from the adrenal gland. The secretory effect of CA evoked by MCP was inhibited markedly by atropine-pretreatment. but only partially blocked when chlorisondamine was added. The secretion of CA induced by MCP was potentiated by pretreatment with physostigmine, adenosine or ouabain. However, MCP-induced CA secretion was suppressed significantly by perfusion of calcium-free Krebs solution containing 5 mM-EGTA for 30 min. Perfusion of MCP (200 ug/30 min.) attenuated the secretory effect of CA evoked by potassium chloride or acetylcholine. These experimental results demonstrate that metoclopramide releases CA significantly by a calcium-dependent exocy totic mechanism. It is thought that the secretory effect of metoclopramide is due to activation of cholinergic muscarinic receptors present in the adrenal gland rather than nicotinic receptors and partly to the direct action on the chromaffin cell itself.

  • PDF

Studies on the Efficacy of Combined Preparation of Crude Drugs (XXII) -Effects of Yijin-Tang on the Digestive System and Isolated Uterus- (생약(生藥) 복합제제(複合製劑)의 약효(藥效) 연구(硏究)(제22보)(第22報) -이진탕(二陳湯)이 소화기계(消化器系) 및 적출자궁(摘出子宮)에 미치는 영향(影響)-)

  • Hong, Nam-Doo;Chang, In-Kyu;Kim, Jong-Woo;Ryu, Seong-Kyu;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.2
    • /
    • pp.73-80
    • /
    • 1985
  • Experimental studies were undertaken to investigate for the effect of Yijin-tang on the digestive system and isolated uterus of rats. Yijin-tang was composed of five crude drugs; Pinelliae Tuber, Aurantii nobilis Pericarpium, Hoelen, Glycyrrhizae Radix and Zingiberis Rhizoma. The results obtained from experiments with water soluble fraction extracted from Yijin-tang were as follows; Spontaneous motilities of isolated ileum of mice and rabbits were suppressed, and contraction of isolated ileum of mice and guinea-pigs induced acetylcholine, barium chloride and histamine were inhibited. The anticathartic action of mice induced by castor oil were significantly observed. The spontaneous motility of isolated uterus of rats was suppressed. Inhibitory effect of gastric juice secretion and antiulcerogenic action were significantly shown in Shay rats.

  • PDF

An experimental research of the efficancy of Boolwhangumjeonggisan (불환금정기산(不換金正氣散)의 효능(效能)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Im, Seong-U;Ryu, Bong-Ha;Park, Dong-Won;Jang, In-Gyu;Ryu, Gi-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.11 no.1
    • /
    • pp.15-27
    • /
    • 1990
  • For the purpose of examing on the efficancy of the Boolwhangumjeonggisan and on the effect of the Boolwhangumjeonggisan, dropsy animals given water boil ding abstraction exgis power. What made an experiment, the motility of isolate ileume, anticathartic action, the action of gastric juice, tied pylous ulcer and inhibited vomitting. 1. Boolwhangumjeonggisan displayed great suppresion effect in regard to automatic movement of the motility of isolated of mice and displayed anti-acethylcholine action, antibarium chloride action. Thus, the origin of muscle relaxation for internal smooth muscle is admitted. 2. It displayed great rexation effect in regard to fraction of rat's stomach and displayed contentional effect in regard to a cetylcholine and barium chloride. 3. It decreased rat of barium sulfate transport through the small intestine of mice. 4. It recognized anti-cathartic action, rat suffered from leading diarrhea by caster oil. 5. Total activity, pepsin secretion decreased and increased the pH of stomach in Shay's method. 6. It recognized powerful prevention effect on tied pylous ulcer. 7. It inhibited vomitting by administration of CuSo4 in frog.

  • PDF

Increase in Hypotonic Stress-Induced Endocytic Activity in Macrophages via ClC-3

  • Yan, Yutao;Ding, Yu;Ming, Bingxia;Du, Wenjiao;Kong, Xiaoling;Tian, Li;Zheng, Fang;Fang, Min;Tan, Zheng;Gong, Feili
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.418-425
    • /
    • 2014
  • Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-${\alpha}$ or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.