• Title/Summary/Keyword: Chloride ions

Search Result 575, Processing Time 0.03 seconds

Evaluation of the Properties of an Environment-Friendly De-icing Agent Based on Industrial By-Products (산업부산물을 활용한 친환경제설제의 특성평가)

  • Heo, Hyung-Seok;Lee, Byung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.132-139
    • /
    • 2017
  • A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride($CaCl_2$) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.

Changes in Corrosion Density of Tendon Under Accelerated Corrosive Condition Considering Chloride-hydroxide Concentration (염소-수산화이온 비율을 고려한 촉진 부식환경에서 텐던의 부식전류 변화)

  • Ja-Ho Bang;Hyeon-Woo Lee;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.21-27
    • /
    • 2024
  • In this study, the corrosion density of tendon was evaluated with changing chloride and hydroxide ions. To simulate an accelerated corrosive environment, wet sand was used instead of concrete, and the tests were conducted considering three levels of chloride concentration (0.0, 0.125, and 0.250mol/l ) and three [Cl-]/[OH-] ratios (0.3, 0.6, and 0.9). The corrosion density was measured to 5.13 µA/cm2 at 0.0mol/l and increased with the chloride concentration. Additionally, no significant differences were observed over 0.125mol/l of chloride concentration. When [OH-] increased with a given chloride concentration (0.125mol/l), the corrosion density decreased linearly, showing effective control of corrosion density even at high chloride concentrations. Notably, the measured corrosion amounts were lower than those under of 0.0mol/l condition. Furthermore corrosion density and influencing parameters were normalized with the maximum and minimum results, and the relation between them was analyzed.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

Photocatalytic Degradation of Mono-, Di-, Tri-chorophenols using continuous Flow Reactor (연속흐름식 반응기를 이용한 모노-, 디-, 트리 클로로페놀의 광촉매반응에 관한 연구)

  • Lee, Sang-Hyup;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.88-95
    • /
    • 1998
  • The Electron/Hole Pair is generated when the Activation Energy produces by Ultraviolet Ray illumination to the Semiconductor. And $OH^-$ ion produces by Water Photo-Cleavage reacts with Positive Hole. As a result, OH Radical acting as strong oxidant is generated and then Photocatalytic Oxidation Reaction occurs. The Photocatalytic Oxidation can oxidize the chlorophenol to Chloride and Carbon Dioxide easier, safer and shorter than conventional Water Treatment Process With the same degree of chlorination, the $Cl^-$ ion at para (C4) position is most easily replaced by the OH radical. And then, the blocking effect of $OH^-$ ion between the $Cl^-$ ions and $Cl^-$ ions at symmetrical location is easily replaced by the OH radical. For mono-, di-, tri-chlorophenols, there is no obvious difference in decomposition rate, decomposition efficiency and completeness of the decomposition reaction except for 2,3-dichloropheno, 2,4,5-, 2,3,4-trichlorophenol. The decomposition efficiency is higher than 75% and completeness of the decomposition reaction is higher than 70%. Therefore, continuous flow photocatalytic reactor is promising process to remove the chlorinated aromatic compounds which is more toxic than non-chlorinated aromatic compound.

  • PDF

Generation of Hazardous Gas and Corrosion Originated from Anaerobic Digestion of Process Water in OCC Recycling Mill (골판지 재활용 공정수의 혐기성 분해에 따른 유해 기체의 생성과 부식)

  • Park, Dae-Sik;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Yung-Bum;Sung, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • There are accumulations of remained chemical additives and contaminants in the process water of semi-closed linerboard mill. High temperature of the process water aggravates the anaerobic digestion of contaminated process water and causes the generation of hazardous gases, which are from the biological reaction of varied additives and contaminants. The hydrogen sulfide in the gases easily combine with moisture in the air, and become sulfuric acid, which causes corrosion of paper machinery. This hydrogen sulfide is from the reduction of sulfate ions in the process water, and the sulfate ions are mostly from the alum. We changed the alum to PAC (Poly Aluminum Chloride). The results were preventing generation of hydrogen sulfide, and equivalent sizing effect by the use of PAC.

Lithium Ion Selective Electrode Based on a Synthetic Neutural Carrier (중성운반체를 이용한 리튬이온 선택 전극)

  • Kim, Jae Sang
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • THF-based crown-4 of 16-membered rings having tetrahydrofuran unit was synthesized by an acid-catalyzed condensation of furan and acetone followed by hydrogenation in an effort to obtain highly elective ionophores for lithium ions. The new ionophore was compared with previously reported ionophores under similar measurement conditions with the same plasticizer, tris(2-ethylhexyl) phosphate in poly(vinyl chloride)(PVC) membrane electrodes. Separate solution method was used to determine relative selectivity coefficients for the electrode. The selectivity coefficients($K_{LiM}^{POT}$) of lithium over ammonium, alkali and alkaline earth metal ions go from about $2.4{\times}10^{-1}$ to $2.3{\times}10^{-4}$ to working range and pH dependence have also been studied.

  • PDF

Potentiometric Response of Chitin - based Membrane Electrode to various Metal cations (키틴 막 전극의 양이온에 대한 감응 연구)

  • Choi, Bun-Hong;Yun, Young-Ja
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.235-242
    • /
    • 1998
  • Membrane electrode based on chitin(po1y-[$1{\rightarrow}4$]-${\beta}$-N-acetyl-D-glucosamine) was prepared by mixing uniformly grounded of chitin (100 mesh) with PVC and DOS. We investigated the potential response of chitin membrane electrode to metal ions. It was observed that the response slopes for $Cd^{2+}$(34.9 mV/decade) and $Cu^{2+}$(34.0 mV/decade) were larger than those for other ions in pH 4 acetate buffer. The potentiometric response of chitin electrode to varying pH was nearly constant in the pH range of 2~12.

  • PDF

Improving the smoking quality of papermaking tobacco sheet extract by using electrodialysis

  • Zhang, Zenghui;Ge, Shaolin;Jiang, Chenxiao;Zhao, Yue;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • Papermaking tobacco sheet is an important reclaimed process for cigarette making. Traditionally, the pressure driven membrane was often used to isolate the effective compounds from the tobacco sheet extract. However, this method is difficult to remove small ionic compounds. Besides, membrane fouling is a major problem for effective use of these pressure driven membrane technologies. In this study, the electrodialysis process is used to removal the chloride ions and nitrate ions, thus the smoking quality of papermaking tobacco sheet extract can get improved. Three types of electrolytes ($Na_2SO_4$, NaCl and HCl) are chosen to prevent the generation of precipitation. The results indicate that 0.1mol/L HCl at current density of $30mA/cm^2$ is the optimal condition for the electrodialysis process. The removal rates of the Cland $NO{_3}^-$ in tobacco sheet extract are 97% and 98.4%, respectively. The electrodialysis process cost was estimated to be 0.11$/L. Naturally, electrodialysis is not only technological feasible, environmental-friendly and economical-attractive for tobacco extract treatment.

The removal of Nitrate-nitrogen from ground water by electrodialysis (전기투석을 이용한 지하수 중의 질산성질소 제거)

  • Min, Ji-Hee;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • In this study, the effects of applied voltage, solution pH and coexistence of other ions such as sulfate ion (${SO_4}^{2-}$) and chloride ion ($Cl^-$) were investigated on the removal of nitrate-nitrogen ($NO_3{^-}-N$) from ground water by electrodialysis. The examined operating conditions were evaluated for optimizing the removal efficiency of $NO_3{^-}-N$. Real ground water samples taken from a rural area of Yongin city and artificial ones with components similar to the real ground water were tested for the study, which contained $NO_3{^-}-N$ concentration of 17mg/L that exceeds current drinking water quality standard of 10 mg/L. The increase in the removal rate of $NO_3{^-}-N$ was observed as the applied voltage increased from 5V to 30V, while no significant increase in the removal rate appeared at the applied voltage beyond 20V during a given operating time. The removal rate appeared to get lower at both acidic and basic condition, compared to neutral pH. Coexistence of of ${SO_4}^{2-}$and $Cl^-$ demanded much longer operating time to achieve a given removal rate or to meet a certain level of treated water concentration. When nitrate ion was combined with ${SO_4}^{2-}$and $Cl^-$, the removal rate was reduced by 4.29% and 10.83%, respectively.