• Title/Summary/Keyword: Chloride ion attack

Search Result 109, Processing Time 0.025 seconds

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

Prediction of Deterioration Process for Concrete Considering Combined Deterioration of Carbonation and Chlorides Ion (중성화와 염해를 고려한 콘크리트의 복합열화 예측)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.902-912
    • /
    • 2003
  • The most common deteriorating processes of concrete structures are carbonation and chloride ion ingress. Many concrete structures have been suffered from chloride ions diffusion or carbonation induced reinforcement corrosion damage and many studies have been done on it. However, those studies were confined mostly to the single deterioration of carbonation or chloride attack only, although actual environment is rather of combined conditions. In case of many in-situ concrete structures, deterioration happened more for the case of combined attack than the single case of carbonation or chloride attack. In this paper, chloride profiles of carbonated concrete is predicted by considering two layer composite model, which is based on Fick's 2nd law. From the experimental result on combined deterioration of chloride and carbonation, it was examined that high chloride concentration was built up to 3∼5 mm over depth from carbonation depth. The analytical modeling of chloride diffusion was suggested to depict the relative influence of the carbonation depth. The diffusion coefficients of carbonation concrete and uncarbonated concrete with elapsed time were considered in this modeling.

Effect of Chloride Ion-reducing Bacteria on the Chloride ion Concentration in Cement Mortars (염소이온 저감능 박테리아가 모르타르의 염소이온 농도에 미치는 영향)

  • Hwang, Ji-Won;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.49-50
    • /
    • 2022
  • This study examined the potential of halophilic bacteria in reducing the chloride ion concentration within the cement mortars exposed to chloride attack. As a result of the experiment, the compressive strength of mortar with Halomonas venusta showed an equivalent performance to that of counterpart mortars without bacteria. Also, the chloride ion concentration measured in mortars including Halomonas Venusta was 71% lower than that of the counterpart mortars without bacteria.

  • PDF

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

Effect of Fly-Ash on the Characteristic of Chloride ion Penetration in Concrete (플라이 애쉬 치환율에 따른 콘크리트의 염소이온 투과특성)

  • 하재담;김태홍;유재상;이종열;박찬규;김상윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.39-42
    • /
    • 2002
  • Cloride attack of concrete is one of the important causes of corrosion of reinforcing steel in concrete with carbonation and frost damage. In this paper, the effect of fly-ash on the cloride attack were investigated by varying water binder ratio and fly-ash contents according to the chloride ion penetrationa test. (ASTM C 1202-94) The principal conclusions from this research were as follows: 1) The compressive strength of concrete at large ages, depends more on $C_2$S contents of base cement than fly-ash contents. 2) On the other hand, the chloride ion penetration of concrete at large ages, principally depends on fly-ash contents and the influence of type of base cement is insignificant.

  • PDF

Durability Estimation of Fire-Hit Concrete Structure to the Chloride Ion (화재의 영향을 받은 콘크리트 구조물의 염해내구성 예측에 관한 연구)

  • Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.219-220
    • /
    • 2010
  • The purpose of this study is to evaluate chloride ion attack durability of concrete structure having experienced the high temperature fire. Mechanical properties and anti chloride ion diffusivity of concrete specimens were measured which have experienced of 2 hours heating at $200{^{\circ}C},\;400{^{\circ}C},\;600{^{\circ}C},\;800{^{\circ}C}$. The coupling FE model of thermal transfer and chloride ion diffusion was built to predict the life expectancy of RC structure using the property values by a series of experiment.

  • PDF

A study on Probability-based Durability Design of Concrete Structures subjected to Chloride Attack (확률론적 방법을 적용한 콘크리트 구조물의 염해 내구성 설계에 관한 연구)

  • Kim Won-Dong;Song Ha-Won;Byun Kun-Joo;Pack Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.161-164
    • /
    • 2005
  • A probability-based durability design which minimizes the uncertainties on durability parameters of concrete is proposed for reinforced concrete structures subjected to chloride attack. The uncertainties of various factors such as water-cement ratio, curing temperature, age of concrete and the variation of these factors which affect chloride ion diffusion are considered. For the durability design, a probability-distribution function for each factor is obtained and a program which combines Fick's 2nd law and Monte Carlo simulation is developed. The durability design method proposed in this study considers probability of durability limit and probability of the concentration of chloride ion, so that the probability-based deterioration prediction is possible.

  • PDF

Chloride Ion Diffusion Characteristics of Fly ash. Concrete with Age (재령에 따른 플라이 애쉬 콘크리트의 염소이온 확산특성)

  • 이재호;이광명;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.681-686
    • /
    • 2003
  • One of the major degradation processes of reinforced concrete (RC) structure is corrosion of reinforced steel due to chloride attack. Severe environments, such as marine environment and exposure to de-icing salts, could accelerate the steel corrosion of RC structures through the chloride ion intrusion into concrete. In order to delay this degradation process, several kinds of admixtures have been used in concrete mix. In this study, effective diffusion coefficient of chloride ion ($D_{eff}$) and total passed charge of concrete with and without fly ash were measured using electrical method. It is found that fly ash concrete has much less chloride ion coefficient than ordinary concrete at later age. By analyzing the test results, $D_{eff}$ at 28 and 90 days was obtained as a function of water-binder ratio (W/B) and an equation for predicting $D_{eff}$ with age was proposed considering the decreasing rate of $D_{eff}$.

  • PDF

Chloride Attack Resistibility of Marine Concrete under Pressure (압력을 받는 해양콘크리트의 염해저항성)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.52-53
    • /
    • 2018
  • As a result of exposing the concrete at 1 and 6 atm in order to evaluate the salt resistance of the pressurized marine concrete, the pressure resulted in promoting the chloride ion penetration of the concrete. Particularly, the amount of water soluble chloride in the surface area tends to increase rapidly, and this cause is considered to be highly correlated with the size of the capillary pores of the concrete. On the other hand, the blending of blast furnace slag was effective to increse chloride attack resistibility even under the pressure.

  • PDF

Chloride Ion Diffusion for Ready Mixed Concrete (설계기준 압축강도별 레미콘의 염소이온 확산 특성평가)

  • Park, Dong-Cheon;Kim, Yong-Ro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.149-150
    • /
    • 2018
  • The RC buildings which are constructed on the seaside are followed by KBC(2016) to achieve the minimization of durability damage. To control the corrosion of the reinforced steel bar by salt attack, W/C should be under 0.4 and specified concrete strength is more than 35MPa in the concrete/building construction standard specification. Ready mixed concretes which have usually include the admixtures in Busan were tested to certify the salt attack durability. In the same specified concrete strength, remarkable salt attack durability was evaluated in comparison to OPC.

  • PDF