• Title/Summary/Keyword: Chloride content

Search Result 849, Processing Time 0.027 seconds

Condition Survey on Durability of Existing Bridges Based on the Results of In-depth Inspection (정밀안전진단자료를 활용한 기존 교량의 내구성 현황분석)

  • Kim, Gyu-Seon;Kim, Hun-Kyom;Lee, Sang-Cheol;Kim, Seung-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.569-572
    • /
    • 2008
  • A series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges since 1995. In this study, based on the test results of the in-depth inspection, the identification of the extent of the chloride content and the incidence of the carbonation depth was conducted, and construction age and member type, environment condition were considered in this analysis. According to simple regression of the tested carbonation depth, the carbonation rate coefficient of the bridges in metropolises was estimated 5.41 and greater than 3.89 and 1.91 in case of marine condition and etc respectively. After measuring chloride content in concrete member, it was concluded that the chloride content of the bridges in marine condition was 4.7 times greater than the others. Especially, slabs had the most highly chloride content and it was estimated 0.709 $kg/m^3$

  • PDF

Prediction of Chloride Profile considering Binding of Chlorides in Cement Matrix

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki Yong
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2009
  • Chloride induced corrosion of steel reinforcement inside concrete is a major concern for concrete structures exposed to a marine environment. It is well known that transport of chloride ions in concrete occurs mainly through ionic/molecular diffusion, as a gradient of chloride concentration in the concrete pore solution is set. In the process of chloride transport, a portion of chlorides are bound in cement matrix then to be removed in the pore solution, and thus only the rest of chlorides which are not bound (i.e. free chlorides) leads the ingress of chlorides. However, since the measurement of free/bound chloride content is much susceptible to environmental conditions, chloride profiles expressed in total chlorides are evaluated to use in many studies In this study, the capacity of chloride binding in cement matrix was monitored for 150 days and then quantified using the Langmuir isotherm to determine the portions of free chlorides and bound chlorides at given total chlorides and the redistribution of free chlorides. Then, the diffusion of chloride ion in concrete was modeled by considering the binding capacity for the prediction of chloride profiles with the redistribution. The predicted chloride profiles were compared to those obtained from conventional model. It was found that the prediction of chloride profiles obtained by the model has shown slower diffusion than those by the conventional ones. This reflects that the prediction by total chloride may overestimate the ingress of chlorides by neglecting the redistribution of free chlorides caused by the binding capacity of cement matrix. From the evaluation, it is also shown that the service life prediction using the free chloride redistribution model needs different expression for the chloride threshold level which is expressed by the total chlorides in the conventional diffusion model.

Thermodynamic Parameters for Micelle Formation of Dodecylpyridinium Chloride (Dodecylpyridinium Chloride의 micelle 形成의 熱力學變數)

  • Han, Man-Un
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 1966
  • The effect of temperature on the critical micelle concentration of dodecylpyridinium chloride has been determined by electrical conductance method over the range from $5^{\circ}C\;to\;50^{\circ}C$. The values of the change in heat content, ${\Delta}H_m$, and the other thermodynamic parameters have been estimated using the equation of temperature dependence on the critical micelle concentration for the same temperature range. The significance of these thermodynamic quantities and their relations to the various current theories of micelle forming processes were discussed.

  • PDF

Experimental Study on Chloride Penetration into Concrete under Combined Exposure Conditions of Chlorides and High Concentrated Sulfates (고농도 황산염 이온이 함께 존재하는 경우의 염소이온 침투특성에 관한 실험 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Jiang, Yi-Rong;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • Recently, the durability of concrete structures has received great attention as the number of sea-side structures, such as new airport, bridges, and nuclear power plants, increases continuously. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the effects of combined deterioration due to chlorides and sulfates in concrete structures. To this end, comprehensive experimental program has been set up to observe the chloride penetration behavior for various test series. The test results indicate that the chloride penetration is more pronounced for the case of combined attack than the case of single chloride attack. The surface chloride content is found to increase with time and the diffusion coefficient for chloride is found to decrease with time. The prediction equations for surface chloride content and diffusion coefficient were proposed according to test results. The equations for chloride penetration considering the time-dependent diffusion coefficients and surface chlorides were also suggested. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of chlorides and high concentration sulfates but the future studies for combined environment will assure the precise assessment.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

A Study on the Estimation of Steel Corrosion in Concrete Exposed under the Environment of Seawater (해양환경하에 방치한 콘크리트중의 철근의 부식 추정에 대한 연구)

  • 문한영;김성수;류재석
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.129-137
    • /
    • 1994
  • This study was performed for the purpose of obtaining the fundamental data to establish the criterion of concrete deterioration and presuming steel corrosion of concrete structures under the environment of seawater. Steel embedded concrete specimens were exposed in seawater for 1year. The soluble chloride content in concrete, corrosion potential and steel corrosion were considered. The results show that soluble chloride content in concrete was decreased with lower water-cement ratio and with mineral admixtures. Half-cell potential is reduced with steel corrosion. Corrosion area ratio is correlative with half-cell potential.

Prediction of Corrosion Threshold Reached at Steel Reinforcement Embedded in Latex Modified Concrete with Mix Proportion Factor (배합변수에 따른 라텍스 개질 콘크리트 내에 정착된 보강철근의 부식개시시기 예측)

  • Park, Seung-Ki;Won, Jong-Pil;Park, Chan-Gi;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • This study were predicted the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC) which were applied the agricultural hydraulic concrete structures. Accelerated testing was accomplished to the evaluate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, the average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC were effected on the mix proportion factor including cement contents, latex content, and water-cement ratio. Especially, the average chloride diffusion coefficient, the corrosion threshold reached at reinforcement in LMC were affected by the all mix proportion factor.

Concentration and Size Distribution of Atmospheric Particulate Matters, Chloride, Nitrate, and Sulfate Salts in Urban Air (都市大氣중 浮遊粒子狀物質, 鹽化物, 窒酸鹽 및 黃酸鹽의 濃度와 粒經分布)

  • Sohn, Dong-Hun;Heo, Moon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 1986
  • Atmospheric particulate matter (A. P. M.) was collected and size-fractionated by an Andersen high-volume air sampler over 15 month period from Jan. 1985 to Feb. 1986 in Seoul. The concentration of chloride, nitrate and sulfate were extracted in an ultrasonic bath and were analyzed by ion chromatography. The annual arithmetical mean of A. P. M. was 128.54 $\mug/m^3$. The concentration of anions were 2.88 $\mug/m^3$ for chloride, 3.86$\mug/m^3$ for nitrate, and 25.44$\mug/m^3$ for sulfate. The content of A. P. M. was lowest in the particle size range 1.1 $\sim 3.3\mum$ and increased as the particle size increased or decreased. And the anions exhibited a seasonal variation in the isize distribution. The contents of anions were higher in winter than summer. Ther ratio of fine particles to the total particles defined by F/T for chloride, nitrate and sulfate. The F\ulcornerT of these anion generally decrease with increasing air temperature. This tendency was prevalent in the chloride and nitrate.

  • PDF

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part II: Immersion Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.109-112
    • /
    • 2010
  • Part I of this study was devoted to the electrical accelerated chloride diffusion in mortars. In this second part, natural chloride diffusion has been investigated for four types of mortars under exposure to a 0.5 mol/L NaCl solution for a period of up to 35 days. Two different types of sand were used for the production of test samples: siliceous sand (used as a reference) and limestone sand (used in this study). The effect of water to cement ratio and exposure time on the diffusion coefficients of mortars was also investigated. In this study, the total and free chloride content and penetration depth of mortar were measured after immersion, and Fick's second law of diffusion was fitted to the experimental data to determine the diffusion coefficient. Their results show that the use of crushed limestone sand in mortar had a positive effect on the chloride resistance. The apparent diffusion coefficient in all specimens was smaller than that in siliceous sand mortar. However, the chloride penetration of these mortars was increased as exposure time progressed.

Concrete mix design for service life of RC structures exposed to chloride attack

  • Kwon, Seung-Jun;Kim, Sang-Chel
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.587-607
    • /
    • 2012
  • The purpose of this research is to propose a design technique of concrete mix proportions satisfying service life through genetic algorithm (GA) and neural network (NN). For this, thirty mix proportions and the related diffusion coefficients in high performance concrete are analyzed and fitness function for diffusion coefficient is obtained considering mix components like w/b (water to binder ratio), cement content, mineral admixture (slag, flay ash and silica fume) content, sand and coarse aggregate content. Through averaging the results of 10 times GA simulations, relative errors to the previous data decrease lower than 5.0% and the simulated mix proportions are verified with the experimental results. Assuming the durability design parameters, intended diffusion coefficient for intended service life is derived and mix proportions satisfying the service life are obtained. Among the mix proportions, the most optimized case which satisfies required concrete strength and the lowest cost is selected through GA algorithm. The proposed technique would be improved with the enhancement of comprehensive data set including wider the range of diffusion coefficients.