• Title/Summary/Keyword: Chloride Diffusion Coefficient

Search Result 266, Processing Time 0.026 seconds

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions (해양 폭로 환경에 따른 GGBFS 콘크리트의 겉보기 염화물 확산계수 비교)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • In this study, the time-dependent chloride ingress behavior in GGBFS concrete was evaluated considering marine exposure conditions and the properties of concrete mixtures. The concrete mixture for this study had 3 levels of water to binder ratio and the substitution rate of GGBFS, and outdoor exposure tests were performed considering submerged area, tidal area, and splash area. According to the evaluation results of diffusion coefficient considering properties of concrete mixtures, as the substitution rate of GGBFS increased, the decreasing rate of the diffusion coefficient decreased based on exposure periods of 730 days(2 years). As the evaluation result of the diffusion behavior according to the marine exposure conditions, the diffusion coefficient was evaluated in the order of submerged area, tidal area, and splash area. In tidal area, a relatively high diffusion coefficient was evaluated due to the repetition of wet and dry seawater. In this study, the effects of GGBFS substitution rate on the decreasing behavior of apparent chloride diffusion coefficient was analyzed in consideration of exposure conditions and periods. Linear regression analysis was performed with apparent chloride diffusion coefficient as output value and GGBFS substitution rate as input value. After 730 days of exposure, the effect of GGBFS on diffusion coefficient was significantly reduced. Even for OPC concrete, after 730 days, the diffusion coefficient was as low as that of GGBFS concrete, so the gradient of the regression equation decreased significantly. It is thought that improved durability performance for chloride ingress can be secured before 730 days through the use of GGBFS.

A Study on the Prediction of Chloride Diffusion Coefficient in Concrete for mediocre apply (범용적 적용을 위한 콘크리트의 염화물 확산계수 예측에 관한 연구)

  • Kim, Dong-Seok;Yoo, Jae-Kang;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.189-192
    • /
    • 2006
  • This study was performed to suggest the mediocre prediction equation of chloride diffusion coefficient which is used to estimate the service life of marine concrete, in order to provide the useful data for concrete mix design of marine concrete. As a result, the mediocre prediction equation of chloride diffusion coefficient which set W/B and mineral admixture replacement ratio as parameters was presented by performing the multivariate non linear regression analysis.

  • PDF

Chloride Diffusion in Hardened Concrete with Concrete Properties and Testing Method (콘크리트 물성 및 시험법에 따른 콘크리트 염화물 확산)

  • Yang Eun-Ik;Kim Myung-Yu;Min Seok-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.261-268
    • /
    • 2004
  • Corrosion of reinforcement is the main cause of damage and early failure of reinforced concrete structures. The corrosion is mainly progressed by the chloride ingress. In this paper, an experimental study is executed to investigate the effect of concrete properties and testing methods on the coefficients of chloride diffusion. Also, it is surveyed the relationship between total chloride and free chloride in concrete. According to this experiment results, W/C ratio and testing method affect chloride diffusion coefficient of concrete. As W/C ratio is increased, diffusion coefficient in concrete is also increased. Diffusion coefficient obtained by each testing method show the different values, respectively. The model equation of diffusion coefficient with W/C ratio is proposed.

Influence of Air Void Characteristic on Chloride Diffusion Coefficient and Compressive Strength of Concrete using Urea and Sulfur (요소와 유황을 첨가한 콘크리트의 압축강도와 염화물 확산계수에 대한 공극특성의 영향)

  • Kim, Jae Hyun;Hong, Ki Nam;Jeon, Byeong Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.75-81
    • /
    • 2016
  • This study presents the effect of urea and sulfur admixture on compressive strength, chloride diffusion coefficient, and internal void distribution of concrete. Compressive strength of concretes with urea admixture by 5% increased by 5% relative to Control. However, that of concretes with urea admixture over 10% decreased. Chloride diffusion coefficient of concrete with urea and sulfur admixture decreased by 40% relative to Control. Additionally, the volume of internal void of concrete with urea and sulfur admixture decreased by 20% relative to Control. Therefore, it can be mentioned from test results that the use of adequate urea and sulfur admixture improves the mechanical properties and durability of concrete.

Construction of Prediction Model Formula of Chloride Diffusion Coefficient Considering Water-Cement Ratio and Compressive Strength of Different Mix Conditions (배합조건이 다른 콘크리트의 물 시멘트비와 압축강도를 고려한 염화물 확산계수 예측모델식 구성)

  • Lee, Taek-Woo;Park, Seong-Bum;Yoon, Eui-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.185-188
    • /
    • 2005
  • This study selected three different specified concrete strength types of mixture which were applied to domestic seawater concrete structure and measured compressive strength and chloride diffusion coefficient and composed the formula of prediction model of chloride diffusion coefficient in order to provide the useful data for concrete mix decision of seawater structures. As a result, the formula of prediction model of chloride diffusion coefficient which set W/C and compressive strength as parameters and performed multiplex regression analysis which was based on the mathematical theory was confirmed more reliable than the formula of prediction which was composed existing water-cement ratio function.

  • PDF

Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성)

  • 문한영;김홍삼;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material (무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가)

  • 김인섭;이종규;추용식;김병익;신영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

Chloride Permeability of High Strength Concrete (고강도 콘크리트의 염화물 침투특성)

  • ;;;Kawano, Hirotaka
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.985-990
    • /
    • 2001
  • Chloride permeability of high strength concrete(HSC) was investigated using saltwater pending test and rapid chloride permeability test by electrical potential(ASTM C 1202). The lower water-cement ratio concrete showed the lower diffusion coefficient of chloride. The relationship between the diffusion coefficient of chloride and charge passed by the rapid chloride permeability test could be obtained. This relationship appears to be an effective method for evaluating chloride permeability of low water-cement HSC.

  • PDF