• 제목/요약/키워드: Chlorella sp. HS2

검색결과 3건 처리시간 0.018초

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2

  • Lee, Hansol;Shin, Won-Sub;Kim, Young Uk;Jeon, Seungjib;Kim, Minsik;Kang, Nam Kyu;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1597-1606
    • /
    • 2020
  • Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRT-PCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.

Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock

  • Kim, Hee Su;Kim, Minsik;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.136-145
    • /
    • 2020
  • Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50℃ was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.

모형 배양조 형태에 따른 단세포 조류의 비증식속도 (Specific Growth Rates of Microalgae in Different Types of Model Photobioreactors)

  • 곽중기;김현주;이지현;신가희;조만기;한봉호
    • 한국수산과학회지
    • /
    • 제31권4호
    • /
    • pp.477-482
    • /
    • 1998
  • 치어의 먹이사료인 동물성 플랑크톤은 단세포조류인 Chlorella를 먹이로 하고 있으며, 우리 나라에서는 현재까지 Chlorella를 연못형 배양조에서 배양하고 있다. 본연구에서는 Chlorella의 생산성을 높이기 위하여 Chlorella 배양 조건 중, 빛의 공급율을 높이는 데에 중점을 두고 여섯 형태의 모형 배양조를 제작하고 Chlorella vulgalis 211-11b의 최대 비증식속도와 생산성을 비교하였다. 모형 배양조 중, ${\mu}_{max}$와 생산성이 가장 큰 것은 HS-Pbr이었으며. 최대 비증식속도와 생산성이 반드시 배양조의 S/V에 비례하지는 않았다.

  • PDF