• Title/Summary/Keyword: Chitinase

Search Result 343, Processing Time 0.032 seconds

Isolation and Characterization of Chitinoloytic Strain, Bacillus atrophaeus CJ-3. (전통발효식품으로부터 Chitin 분해 미생물의 분리 및 특성 규명)

  • 고보경;최인순;이상현;임채오;이성호;갈상완;최영주
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.501-508
    • /
    • 2004
  • A bacterial strain CJ-3 which produced chitinase was isolated from Korean traditional soy sauce. Using 16S rDNA analysis, the strain CJ-3 was identified as Bacillus atrophaeus. The approximate molecular weight of the putative chitinase enzyme was 31.0 kDa and the enzyme activity was remarkably induced by addition of colloidal chitin (0.5, 1.0, 2.0%). The antioxidant activity was increased 53% by the browning reaction products of B. atrophneus CJ-3. Escherichia. coli lipopolysaccharides (LPS)-induced production of nitric oxide(NO) was reduced up to 45% by the browning reaction product in RAW264.7 macrophage. Inhibition of cell viability in the presence of LPS was recovered to normal level by the browning reaction product. These results suggest that browning reaction of B. atrophaeus CJ-3 plays an important role for activation of immune system. B. atrophaeus CJ-3 exhibited optimum temperature and pH of 37$^{\circ}C$ and pH 7.0∼8.0, respectively. The major intracelluar free amino acid was determined to be glutamate.

Purification of Chitinase from an Antagonistic Bacterium Bacillus sp.7079 and Pro-Inflammatory Cytokine Gene Expression by PCTC

  • Han, Ok-Kyung;Lee, Eun-Tag;Lee, Young-Sun;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2003
  • Chitinase was purified from an antagonistic bacterium Bacillus sp. 7079 by ammonium sulfate precipitation, QAE-Sephadex anion exchange chromatography, Sephadex G-100 gel filtration, and SP-Sephadex cation exchange chromatography. The molecula. weight of purified chitinase (PC-1) was approximately 66.5 kDa on SDS-PACE. PC-1 exhibited optimum pH and temperature of pH 7.5 and $45^{\circ}C$, respectively. More than $80\%$ of PC-1 was stable at pH 5.0 to 9.0, and more than $90\%$ at $40^{\circ}C$. $Fe^2+\;and\;Ca^2+$ inhibited the chitinase activity about $20\%$, and EDTA and p-CMB by about $30\%$, whereas $Ag^+$ inhibited the activity up to $65\%$. The $K_m$ value of PC-1 was 1.215 mg/ml with colloidal chitin as a substrate. We also investigated the effect of PC-1 treated chitin (PCTC) on the pro-inflammatory cytokine gene expression in macrophage RAW 264.7 cells. The expression of IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA gene was investigated using reverse transcriptase polymerase chain reaction (RT-PCR). IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA were induced by the treatment of PCTC and chitin only in RAW 264.7 cells. These expressions were induced as early as 2 h and sustained up to 24 h in RAW 264.7 cells. IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA were more strongly expressed by the treatment of PCTC than chitin treatment alone in RAW 264.7 cells.

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • Seo, Eun-Yeong;Son, Gwang-Hui;Sin, Dong-Ha;Kim, Gi-Deok;Park, Du-Sang;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.469-472
    • /
    • 2002
  • Solid state fermentation was performed for the production of entomopathogenic fungus Metarhizium anisopliae HY-2 using wheat bran media containing rice bran. Fungal growth in a solid state fermentation system was estimated by viable cell count, spore count, and mycelial biomass. It was used chemical method measuring N-acetyl-glucosamine (chitin) content for estimating of mycelial biomass. In static flask culture, viable cell reached 2.40 ${\times}$ $10^8$ cfu/g at 23 days of culture at $27^{\circ}C$ and then mycelial biomass was 41.59 mg/g. Specific growth rate(${\mu}$ max) was 0.0418 $h^{-1}$ between 3 and 9 days when estimated by viable cell count and was 0.00976 $h^{-1}$ between 9 and 17 days when N-acetylglucosamine content was measured. Viable cells reached 1.12 ${\times}$ $10^8$ cfu/g in polypropylene-bag at 28 days of culture at $27^{\circ}C$. Formulated microbial pesticide containing M. anisopliae HY-2 were tested their bio-activity against Chestnut Brown Chafer (Adoretus tenuimaculatus). The protection rate of the liquid culture showed 13 ${\sim}$ 26 % with 1st to 3rd instar, and spore suspension of M. anisopliae HY-2 showed 56 ${\sim}$ 64%. Conidia produced by large scale solid-state fermentation showed 20 ${\sim}$ 27 % activity 60 ${\sim}$ 64 % with M. anisopliae HY-2.

  • PDF

Purification and Characterization of Chitinase from Paenibacillus illinoisensis KJA-424

  • JUNG WOO JIN;KUK JU HEE;KIM KIL YONG;KIM TAE HWAN;PARK RO DONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.274-280
    • /
    • 2005
  • A chitinase was purified from the culture supernatant of Paenibacillus illinoisensis KJA-424 by protein precipitation, DEAE-Sephadex anion-exchange chromatography, and Sephadex G-150 gel filtration. The molecular weight of the purified chitinase was 54 kDa on SDS-PAGE and activity staining. Optimal pH and temperature were pH 5.0 and 60$^{circ}$C, the presence of 10 ruM Ag$^{+}$ and Hg$^{2+}$ inhibited the activity by $92.1/%$ and $97.7/%$, and the K$_{m}$ and V$_{max}$ values were 1.12 mg chitin mrl and 1.48$\mu$mol GlcNAc min$^{-1}$, respectively. The enzyme hydrolyzed tetramer to dimer, pentamer to dimer and trimer, and hexamer to dimer, trimer and tetramer, indicating an endo-splitting mechanism. The chitinase had no hydrolytic activity toward dimer and trimer. The chitinase inhibited the mycelial growth of Rhizoctonia solani, suggesting an antifungal property.

Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential

  • Lee, Yong Seong;Neung, Saophuong;Park, Yun Suk;Kim, Kil Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.299-305
    • /
    • 2014
  • In this paper, fractional factorial screening design (FFSD) and central composition design (CCD) were used to optimize the medium components for producing chitinase and gelatinase by Lysobacter capsici YS1215. Crab shell powder, nutrient broth and gelatin were proved to have significant effects on chitinase and gelatinase activity by FFSD first. An optimal medium was obtained by using a three factor CCD, which consisted of nutrient broth of $2.0gL^{-1}$, crab shell powder of $2.0gL^{-1}$ and gelatin of $1.0gL^{-1}$, respectively with the highest chitinase activity ($3.34UmL^{-1}$) and gelatinase activity ($14.15UmL^{-1}$). This value was 3.76 and 1.11 fold of the chitinase and gelatinase activity, respectively, compared to the lowest productive medium in the design matrix. In investigating potential of these enzymes partially purified from L. capsici YS1215 for biotechnological use, the crude enzymes was found to be inhibition against pathogenic fungal mycelia: Colletotrichum gleosporioides, Phytophthora capsici, and Rhizoctonia solani. In this study, we demonstrated the optimal medium for producing the chitinolytic and gelatinolytic enzymes by the strain YS1215 and the role of their enzymes that may be useful for further development of a biotechnological use and agricultural use for biological control of phytopathogenic fungi.

Biological Characteristics of Recombinant Arthrobotrys oligospora Chitinase AO-801

  • Gong, Shasha;Meng, Qingling;Qiao, Jun;Huang, Yunfu;Zhong, Wenqiang;Zhang, Guowu;Zhang, Kai;Li, Ningxing;Shang, Yunxia;Li, Zhiyuan;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.345-352
    • /
    • 2022
  • Chitinase AO-801 is a hydrolase secreted by Arthrobotrys oligospora during nematode feeding, while its role remained elusive. This study analyzed the molecular characteristics of recombinant chitinase of Arthrobotrys oligospora (reAO-801). AO-801 belongs to the typical glycoside hydrolase 18 family with conserved chitinase sequence and tertiary structure of (α/β)8 triose-phosphate isomerase (TIM) barrel. The molecular weight of reAO-801 was 42 kDa. reAO-801 effectively degraded colloidal and powdered chitin, egg lysate, and stage I larval lysate of Caenorhabditis elegans. The activity of reAO-801 reached its peak at 40℃ and pH values between 4-7. Enzyme activity was inhibited by Zn2+, Ca2+, and Fe3+, whereas Mg2+ and K+ potentiated its activity. In addition, urea, sodium dodecyl sulfate, and 2-mercaptoethanol significantly inhibited enzyme activity. reAO-801 showed complete nematicidal activity against C. elegans stage I larvae. reAO-801 broke down the C. elegans egg shells, causing them to die or die prematurely by hatching the eggs. It also invoked degradation of Haemonchus contortus eggs, resulting in apparent changes in the morphological structure. This study demonstrated the cytotoxic effect of reAO-801, which laid the foundation for further dissecting the mechanism of nematode infestation by A. oligospora.

RNA Interference of Chitinase Gene in Spodoptera litura (담배거세미나방(Spodoptera litura) Chitinase gene의 RNA interference)

  • Jeon, Mi Jin;Seo, Mi Ja;Youn, Young Nam;Yu, Yong Man
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.202-209
    • /
    • 2014
  • RNA interference (RNAi) is the method which controls phenotypes of gene in live cells. Chitinase is the enzyme helping digestion and absorption of old cuticles during the ecdysis of insects. In order to investigate molting-inhibition effect with the chitinase related gene in Spodoptera litura, RNA was extracted from the $5^{th}$ instars. cDNA was synthesized and then we obtained about 700 bp size chitinase. After PCR products were cloned into a pGEM T-easy vector, colonies were picked. DNA was extracted from the colony cultures. EcoR I enzyme was used to check whether PCR products were inserted or not. And then we confirmed vector band of about 3 kb and insert band of about 700 bp. To synthesize the dsRNA, each DNA was cut with Spe I and Nco I enzymes (Circular DNA became lineared DNA). After synthesis of dsRNA, approximately 5 ul dsRNA was injected into the $3^{rd}$ abdominal segment of S. litura $4^{th}$ larvae. The concentration of dsRNA was about $10{\mu}g/{\mu}l$. We confirmed larval-larval molting : there were phenotypically abnormal individuals - for instance malformation, molting inhibition and change of integument color. Pupaadult molting : there were phenotypically abnormal individuals - for instance molting inhibition, change of wings and malformation. Also we could investigate the pupation, emergence and variation about noninjection, treated with DW and dsRNA. Each pupation was non-injection 83.3%, DW 78.3% and dsRNA 66.7%. Each emergence was non-injection 90.0%, DW 72.3% and dsRNA 65.0%. So we considered that chitinase dsRNA induced molting inhibition effect. But each variation was non-injection 8.9%, DW 2.9% and dsRNA 19.2%. Therefore dsRNA group showed the highest variation value. When 18 hours after injecting dsRNA, we could obtain abnormal individual.

AUTOLYSIS IN THE ANAEROBIC FUNGUS Piromyces communis OTS1 : PRESENCE OF CHITINASE AND β-1, 3-GLUCANASE ACTIVITIES

  • Sakurada, M.;Morgavi, D.P.;Ohishi, T.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.303-307
    • /
    • 1996
  • The degree of autolysis and presence of cell-wall degrading enzymes in an anaerobic ruminal fungus, Piromyces communis OTSI, grown in liquid medium, was monitored to evaluate the effect of self-digestion on fungal biomass. After a 30 days incubation period fungal dry weight decreased by 45% and the cell wall component chitin decreased by 22%. Chitinase activity detected in the supernatant was mainly of the endotype and peaked at day 6 of the incubation. ${\beta}-1$, 3-glucanase was detected from day 4 and increased throughout the incubation period. Autolysis was a slow process, and under natural conditions it is unlikely that it plays a significant role in the degradation of the spent fungal vegetative stage in the rumen.

Chitinase Produced by Streptomyces sp.

  • 홍용기;서정훈
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.208.4-209
    • /
    • 1978
  • The Chitinase which hydrolyzes the chitin, $\beta-1,$ 4-polymer of N-acetyl glucosamine, was purified from the culture broth of Streptomyces sp. 115-5 strain. The homogeneity of enzyme was reveali by CM-Sephadex C-50 column chromatography and polyacrylamide gel electrophoresis. The purified enzyme hydrolyzed chitin and chitosan, but not cellulose. And with chitin as the substrate, a Km value of 3.6mg per ml and a Vmax of $100\mu$ mole per hr were found. The activation energy for the reaction was 3.66 Kcal per mole. The M. W. was estimated 56,000 daltons, and PI as 3.0. The chitinase was inhibited by the addition of glucose, glucuronic acid, sorbitol and xylose as product inhibitors and its inhibition pattern by glucose was estimated pure competitive type.

  • PDF

Functions of the C-Terminal Region of Chitinase ChiCW from Bacillus cereus 28-9 in Substrate-Binding and Hydrolysis of Chitin

  • Huang, Chien-Jui;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1897-1903
    • /
    • 2006
  • In order to investigate the functions of the C-terminal region of chitinase ChiCW of Bacillus cereus 28-9, a C-terminal truncated enzyme, ChiCW$\Delta$FC, was expressed in Escherichia coli and purified to homogeneity for biochemical characterization. Compared with ChiCW, ChiCW$\Delta$FC exhibited higher chitinase activity at high temperature and pH, but expressed lower hydrolytic and binding activities toward insoluble substrates. In addition, kinetic properties indicated that ChiCW$\Delta$MC hydrolyzed oligomeric and polymeric substrates less efficiently than ChiCW. These results suggest that the C-terminal region of ChiCW plays important roles in substrate binding and hydrolysis of chitin. In addition, the biological meaning of C-terminal proteolytic modification of ChiCW is discussed.