• Title/Summary/Keyword: Chirality

Search Result 96, Processing Time 0.025 seconds

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

Enantioselective Recognition of Amino Alcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the Hydrogen Bonding Donor Sites

  • Kim, Ji-Young;Nandhakumar, Raju;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1263-1267
    • /
    • 2011
  • Novel binol-based uryl and guanidinium receptors having higher ring conjugation at the periphery of the hydrogen bonding donor sites have been synthesized and utilized to study the enantioselective recognition of 1,2-aminoalcohols and chirality conversion of natural amino acids via imine bond formation. There is a remarkable decrease in the stereoselectivites as the conjugation increases at the periphery of hydrogen bonding donor sites. The guanidinium-based receptors show more selectivity towards the amino alcohol than that of the uryl based ones due to its charge reinforced hydrogen bonds. The conversion efficiency of L-amino acids to Damino acids by the uryl-based receptors is higher than that of the guanidinium-based ones.

Cyclic Oligopyrroles as Sensors for Absolute Configuration Determination of Carboxylic Acids

  • Lintuluoto Juha M.;Nakayama Kana;Setsune Jun-Ichiro
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.241-241
    • /
    • 2006
  • Absolute configuration of carboxylic acids, including amino acids can be determined by circular dichroism (CD) exciton chirality method. This method employs cyclic oligopyrroles able to form stable complexes with carboxylic acids. Addition of carboxylic acids to the oligopyrroles induce CD spectrum at the macrocycle absorption region and in which the sign of the $1^{st}$ Cotton effect is determined solely by the absolute configuration of the carboxylic acid. The basicity of the pyrrole nitrogen can be controlled by macrocycle substitution thus yielding more sensitive chirality sensors.

  • PDF

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Multi-scale Modeling of Multi wall Carbon Nanotube (다중벽 탄소 나노튜브의 멀티스케일 모델링)

  • Park, Jong-Youn;Cho, Young-Sam;Kim, Sung-Youb;Lee, Young-Min;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.542-546
    • /
    • 2004
  • Fully non-local Quasicontinuum method using sub-divided region with Hermite interpolation function is proposed for simulation of carbon nanotube. Tersoff-Brenner potential is adopted for interaction of bonded atoms and also van der Waals force for non-bonded interaction. Bending of single wall carbon nanotube with chirality (20,0) and 15nm length is simulated up to 90 degree. Bending of double wall carbon nanotube with chirality (20,0) and (12,0) is simulated up to 65 degree. Bending of four wall carbon nanotube is simulated up to 45 degree.

  • PDF