• Title/Summary/Keyword: Chip-On-Glass(COG)

Search Result 39, Processing Time 0.026 seconds

LCD Driver IC Assembly Technologies & Status

  • Shen, Geng-shin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.21-30
    • /
    • 2002
  • According the difference of flex substrate, (reel tape), there are three kind assembly types of LCD driver IC is COG, TCP and COF, respectively. The TCP is the maturest in these types for stability of raw material supply and other specification. And TCP is the major assembly type of LCD driver IC and the huge demand from Taiwan's large TFT LCD panel house since this spring. But due to its package structure and the raw material applied in this package, there is some limitation in fine pitch application of this package type, (TCP). So, COF will be very potential in compact and portable application comparison with TCP in the future. There are three kinds assembly methods in COF, one is ACF by using the anisotropic conductive film to connect the copper lead of tape and gold bump of IC, another is eutectic bonding by using the thermo-pressure to joint the copper lead of tape and gold bump of IC, and last is NCP by using non-conductive paste to adhere the copper lead of tape and gold bump of IC. To have a global realization, this paper will briefly review the status of Taiwan's large TFT panel house, the internal driver IC design house, and the back-end assembly house in the beginning. The different material property of raw material, PI tape is also compared in the paper. The more detail of three kinds of COF assembly method will be described and compared in this paper.

  • PDF

Effects of Sputtering Conditions of TiW Under Bump Metallurgy on Adhesion Strength of Au Bump Formed on Al and SiN Films (Al 및 SiN 박막 위에 형성된 TiW Under Bump Metallurgy의 스퍼터링 조건에 따른 Au Bump의 접착력 특성)

  • Jo, Yang-Geun;Lee, Sang-Hee;Kim, Ji-Mook;Kim, Hyun-Sik;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.19-23
    • /
    • 2015
  • In this study, two types of Au/TiW bump samples were fabricated by the electroplating process onto Al/Si and SiN/Si wafers for the COG (Chip On Glass) packaging. TiW was used as the UBM (Under Bump Metallurgy) material of the Au bump and it was deposited by a sputtering method under the sputtering powers ranges from 500 to 5000 Watt. We investigated the delamination phenomenas for the prepared samples as a function of the input sputtering powers. The stable interfacial adhesion condition was found to be 1500 Watt in sputtering power. In addition, the SAICAS (Surface And Interfacial Cutting Analysis System) measurement was used to find the adhesion strength of Au bumps for the prepared samples. TiW UBM films were deposited at the 1500 Watt sputtering power. As a results, there was a similar adhesion strengths between TiW/Au interfacial films on Al/Si and SiN/Si wafers. However, the adhesion strength of TiW UBM sputtering films on Al and SiN under films were 2.2 times differences, indicating 0.475 kN/m for Al/Si wafer and 0.093 kN/m for SiN/Si wafer, respectively.

COG 플립칩 본딩 공정조건에 따른 Au-ITO 접합부 특성

  • Choe, Won-Jeong;Min, Gyeong-Eun;Han, Min-Gyu;Kim, Mok-Sun;Kim, Jun-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • LCD 디스플레이 등에 사용되는 글래스 패널 위에 bare si die를 직접 실장하는 COG 플립칩 패키지의 경우 Au 범프와 ITO 패드 간의 전기적 접속 및 접합부 신뢰성 확보를 위해 접속소재로서 ACF (anisotropic conductive film)가 사용되고 있다. 그러나 ACF는 고가이고 접속피치 미세화에 따라 브릿지 형상에 의한 쇼트 등의 문제가 발행할 수 있어 NCP (non-conductive paste)의 상용화가 요구되고 있다. 본 연구에서는 NCP를 적용한 COG 패키지에 있어서 온도, 압력 등의 열압착 본딩 조건과 NCP 물성이 Au-ITO 접합부의 전기적 및 기계적 특성에 미치는 영향을 조사하였다. NCP는 에폭시 레진과 경화제, 촉매제를 사용하여 다양하게 포뮬레이션을 하였고 DSC (Differential Scanning Calorimeter), TGA (Thermogravimetric Analysis), DEA (Dielectric Analysis) 등의 열분석장비를 이용하여 NCP의 물성과 경화 거동을 확인하였다. 테스트 베드는 면적 $5.2{\times}7.2\;mm^2$, 두께 650 ${\mu}m$, 접속피치 200 ${\mu}m$의 Au범프가 형성된 플립칩 실리콘 다이와 접속패드가 ITO로 finish된 글래스 기판을 사용하였다. 글래스 기판과 실리콘 칩은 본딩 전 PVA Tepla사의 Microwave 플라즈마 장비로 Ar, $O_2$ 플라즈마 처리를 하였으며, Panasonic FCB-3 플립칩 본더를 사용하여 본딩하였다. 본딩 후 접합면의 보이드를 평가하고 die 전단강도로 접합강도를 측정하였다.

  • PDF

Failure in the COG Joint Using Non-Conductive Adhesive and Polymer Bumps (감광성 고분자 범프와 NCA (Non-Conductive Adhesive)를 이용한 COG 접합에서의 불량)

  • Ahn, Kyeong-Soo;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • We studied a bonding at low temperature using polymer bump and Non-Conductive Adhesive (NCA), and studied the reliability of the polymer bump/Al pad joints. The polymer bumps were formed on oxidized Si substrates by photolithography process, and the thin film metals were formed on the polymer bumps using DC magnetron sputtering. The substrate used was AL metallized glass. The polymer bump and Al metallized glass substrates were joined together at $80^{\circ}C$ under various pressure. Two NCAs were applied during joining. Thermal cycling test ($0^{\circ}C-55^{\circ}C$, cycle/30 min) was carried out up to 2000 cycles to evaluate the reliability of the joints. The bondability was evaluated by measuring the contact resistance of the joints through the four point probe method, and the joints were observed by Scanning Electron Microscope (SEM). The contact resistance of the joints was $70-90m{\Omega}$ before the reliability test. The joints of the polymer bump/Al pad were damaged by NCA filler particles under pressure above 200 MPa. After reliability test, some joints were electrically failed since thinner metal layers deposited at the edge of bumps were disconnected.

  • PDF

Improvement of COF Bending-induced Lead Broken Failure in LCD Module (LCD Module내 COF Bending에 따른 Lead Broken Failure의 개선)

  • Shim, Boum-Joo;Choi, Yeol;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.265-271
    • /
    • 2008
  • TCP(Tape Carrier Package), COG (Chip On Glass), COF(Chip On Film) are three methods for connecting LDI(LCD Driver IC) with LCD panels. Especially COF is growing its portion of market place because of low cost and fine pitch correspondence. But COF has a problem of the lead broken failure in LCD module process and the usage of customer. During PCB (Printed Circuit Board) bonding process, the mismatch of the coefficient of thermal expansion between PCB and D-IC makes stress-concentration in COF lead, and also D-IC bending process during module assembly process makes the level of stress in COF lead higher. As an affecting factors of lead-broken failure, the effects of SR(Solder Resister) coating on the COF lead, surface roughness and grain size of COF lead, PI(Polyimide) film thickness, lead width and the ACF(Anisotropic Conductive Film) overlap were studied, The optimization of these affecting manufacturing processes and materials were suggested and verified to prevent the lead-broken failure.

Technology Trend of Sputtering Type FCCL for Display Material (Display 소재용 Sputtering Type FCCL의 기술 동향)

  • Lee, Man-Hyeong;Ryu, Han-Gwon;Kim, Yeong-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.33-42
    • /
    • 2015
  • 오늘날 연성회로기판(FCCL : Flexible Copper Clad Laminate)은 디스플레이, 스마트폰, 자동차, 항공, 의료 기기, 산업용 컨트롤 기기 등 거의 모든 고급 전자 제품들에 사용되고 있다. 특히 디스플레이 분야에서는 뛰어난 연성과 내구성을 바탕으로 경박단소화에 유리할 뿐만 아니라 구동부에 적용이 가능한 장점 등으로 그 적용처가 점점 늘어나고 있는 추세이다. 이 가운데서도 LCD와 OLED의 구동소자(Display Driver IC)를 장착하는 COF(Chip on Film)는 대표적인 연성회로기판(FCCL) 적용 부품으로서, 최근 인기를 끌고 있는 디스플레이의 제로-베젤(Zero-bezel)을 가능케 하는 핵심 부품이다. COF용 연성회로기판(FCCL) 소재로는 우수한 평탄도, 파인피치(Fine-pitch)구현성, 내굴곡성, 광투과성 등을 보유하고 있는 Sputtering Type FCCL이 사용되고 있다. 특히 최근 Display 분야의 화두가 되고 있는 POLED(Plastic-OLED) 패널을 장착한 Flexible Mobile 디스플레이의 경우, 기존의 COG(Chip on Glass) 접합방식이 아닌 COF 접합방식을 채택하고 있으며, 기존의 단면 COF보다 3배의 고해상도 구현이 가능한 양면 COF를 채택하기에 이르렀다. 기존의 COF 제작공정과 달리 Semi Additive 공정으로 제작되는 양면 COF 시장의 태동으로 양면 연성회로기판(FCCL)의 수요 증가가 예상되는 등 최근 디스플레이 기술 발전은 소재 분야에도 큰 변화를 잉태하고 있다. 이러한 최근 디스플레이 업계의 고해상도, 고속 신호 전송, 슬림화, Flexible 추세에 대응 가능한 최적의 특성을 보유하고 있는 Sputtering Type FCCL을 중심으로 디스플레이의 발전에 대응하는 소재의 기술 개발 동향을 살펴보고자 한다.

  • PDF

Chip on Glass Technologies for High-Performance LCD Applications

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.203-215
    • /
    • 2002
  • Using eutectic In-Ag and Bi-Sn solder materials, we developed the COG technique having a minimum pitch of 50 ${\mu}{\textrm}{m}$. The maximum temperature in this process is $160^{\circ}C$. We fabricated spherical and uniform solder bumps by controlling the microstructure of Bi-Sn solder bumps. The contact resistances of Bi-Sn solder joints were 19 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch and 60 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch, respectively. These values are much lower than the contact resistance of the conventional ACF bonding. The contact resistances of the solder joint are almost the same before and after the underfill process. The contact resistance of the underfilled Bi-Sn solder joint did not change even after reliability test.

  • PDF

A Study on Ni Electroless Plating Process for Solder Bump COG Technology (COG용 Solder Bump 제작을 위한 Ni 무전해 도금 공정에 관한 연구)

  • Han, Jeong-In
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.794-801
    • /
    • 1995
  • To connect the driver IC and Al coated glass, a method has been developed to plate electrolessly Ni on Al/PR system. It Is necessary to pretreat Al to remove oxide film before plating. In order to find pretreatment process which does not damage photoresist or glass, alkaline and fluoride zincate process have been investigated. Because photoresist and aluminum thin film can easily dissolve in alkaline solution, it is considered that the fluoride zincate process was a suitable one. After immersion in the zincate solution containing 1.5 g/$\ell$ ammonium bifluoride and 100 g/$\ell$ zinc sulfate, electroless nickel plating could be performed. The additive in the zincate solution and thiourea in the plating solution increased smoothness of the plated surface. Acld dip could improve the uniformit of the surface.

  • PDF