• Title/Summary/Keyword: Chip removing

Search Result 45, Processing Time 0.02 seconds

A Method of Dog Recognition using Nose Print and Landmarks

  • Kwak, Ho-Young;Yun, Young-Min;Chang, Jin-Wook;Song, Woo Jin;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.99-106
    • /
    • 2022
  • In this paper, We propose a method for identifying objects by setting inscriptions and landmarks of dogs. The phenomenon of abandoning dogs is on the rise, and the number of abandoned individuals is also rapidly increasing. These abandoned dogs are becoming wild animals, causing a lot of damage to people's daily life, causing serious problems. As a solution to this problem, the animal registration system is being implemented, but there is a phenomenon that some dog owners avoid the registration method that inserts a chip, so the complete registration system is not settled. When registering a dog, removing the avoidance of dog owners will help establish the companion animal registration system. In this paper, we present a technique to identify objects by setting inscriptions and landmarks of dogs so that dog owners can register their dogs in a friendly way to eliminate this avoidance phenomenon.

Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles (단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘)

  • Park, Yeeun;Kang, Geeyoon;Park, Minsu;Noh, Hyowoong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.

Trace-Back Viterbi Decoder with Sequential State Transition Control (순서적 역방향 상태천이 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.51-62
    • /
    • 2003
  • This paper presents a novel survivor memeory management and decoding techniques with sequential backward state transition control in the trace back Viterbi decoder. The Viterbi algorithm is an maximum likelihood decoding scheme to estimate the likelihood of encoder state for channel error detection and correction. This scheme is applied to a broad range of digital communication such as intersymbol interference removing and channel equalization. In order to achieve the area-efficiency VLSI chip design with high throughput in the Viterbi decoder in which recursive operation is implied, more research is required to obtain a simple systematic parallel ACS architecture and surviver memory management. As a method of solution to the problem, this paper addresses a progressive decoding algorithm with sequential backward state transition control in the trace back Viterbi decoder. Compared to the conventional trace back decoding techniques, the required total memory can be greatly reduced in the proposed method. Furthermore, the proposed method can be implemented with a simple pipelined structure with systolic array type architecture. The implementation of the peripheral logic circuit for the control of memory access is not required, and memory access bandwidth can be reduced Therefore, the proposed method has characteristics of high area-efficiency and low power consumption with high throughput. Finally, the examples of decoding results for the received data with channel noise and application result are provided to evaluate the efficiency of the proposed method.

Fast-Transient Digital LDO Regulator With Binary-Weighted Current Control (이진 가중치 전류 제어 기법을 이용한 고속 응답 디지털 LDO 레귤레이터)

  • Woo, Ki-Chan;Sim, Jae-Hyeon;Kim, Tae-Woo;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1154-1162
    • /
    • 2016
  • This paper proposes a fast-transient digital LDO(Low dropout) regulator with binary-weighted current control technique. Conventional digital LDO takes a long time to stabilize the output voltage, because it controls the amount of current step by step, thus ringing problem is generated. Binary-weighted current control technique rapidly stabilizes output voltage by removing the ringing problem. When output voltage reliably reaches the target voltage, It added the FRZ mode(Freeze) to stop the operation of digital LDO. The proposed fast response digital LDO is used with a slow response DC-DC converter in the system which rapidly changes output voltage. The proposed digital controller circuit area was reduced by 56% compared to conventional bidirectional shift register, and the ripple voltage was reduced by 87%. A chip was implemented with a $0.18{\mu}F$ CMOS process. The settling time is $3.1{\mu}F$ and the voltage ripple is 6.2mV when $1{\mu}F$ output capacitor is used.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.