• Title, Summary, Keyword: Chinese consumer electronics industry

Search Result 3, Processing Time 0.03 seconds

R & D Networks Structure and Spatial Characteristics of Consumer Electronic Industry in Qingdao, China: The Case Study of Qingdao Haier Group in China (중국 가전산업의 연구개발 네트워크 구조와 공간적 특징 - 청도 하이얼(海爾, Haier) 그룹 사례 연구 -)

  • Quan, Guang-Ri;Ryu, Ju-Hyun;Lee, Sung-Cheol
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.292-303
    • /
    • 2012
  • The main purpose of this study is to analyze R&D networks and spatial implications in Qingdao consumer electronics industry agglomeration in China. The characteristics of R&D networks in Qindao consumer electronic industry are as follows. There is a cluster central around large enterprises led by the government and their subcontracting enterprises. However, the degree of collaborative networks in intra-firm, inter-firm, firm-research institutes(including university lab.) is relatively low. Therefore, Large enterprises in Qingdao has stimulated research collaborations with firms and research institutes located in other regions rather than within region. It is likely to show that R&D networks of consumer electronics industry has not been stimulated in Qingdao. Therefore, collaborative R&D networks among firms, research institutes and governments should be stimulated to build regional innovation systems central around consumer electronics industry in Qingdao.

  • PDF

The Impact of Conflict and Influence Strategies Between Local Korean-Products-Selling Retailers and Wholesalers on Performance in Chinese Electronics Distribution Channels: On Moderating Effects of Relational Quality (중국 가전유통경로에서 한국제품 현지 판매업체와 도매업체간 갈등 및 영향전략이 성과에 미치는 영향: 관계 질의 조절효과)

  • Chun, Dal-Young;Kwon, Joo-Hyung;Lee, Guo-Ming
    • Journal of Distribution Research
    • /
    • v.16 no.3
    • /
    • pp.1-32
    • /
    • 2011
  • I. Introduction: In Chinese electronics industry, the local wholesalers are still dominant but power is rapidly swifting from wholesalers to retailers because in recent foreign big retailers and local mass merchandisers are growing fast. During such transient period, conflicts among channel members emerge important issues. For example, when wholesalers who have more power exercise influence strategies to maintain status, conflicts among manufacturer, wholesaler, and retailer will be intensified. Korean electronics companies in China need differentiated channel strategies by dealing with wholesalers and retailers simultaneously to sell more Korean products in competition with foreign firms. For example, Korean electronics firms should utilize 'guanxi' or relational quality to form long-term relationships with whloesalers instead of power and conflict issues. The major purpose of this study is to investigate the impact of conflict, dependency, and influence strategies between local Korean-products-selling retailers and wholesalers on performance in Chinese electronics distribution channels. In particular, this paper proposes effective distribution strategies for Korean electronics companies in China by analyzing moderating effects of 'Guanxi'. II. Literature Review and Hypotheses: The specific purposes of this study are as follows. First, causes of conflicts between local Korean-products-selling retailers and wholesalers are examined from the perspectives of goal incongruence and role ambiguity and then effects of these causes are found out on perceived conflicts of local retailers. Second, the effects of dependency of local retailers upon wholesalers are investigated on local retailers' perceived conflicts. Third, the effects of non-coercive influence strategies such as information exchange and recommendation and coercive strategies such as threats and legalistic pleas exercised by wholesalers are explored on perceived conflicts by local retailers. Fourth, the effects of level of conflicts perceived by local retailers are verified on local retailers' financial performance and satisfaction. Fifth, moderating effects of relational qualities, say, 'quanxi' between wholesalers and retailers are analyzed on the impact of wholesalers' influence strategies on retailers' performances. Finally, moderating effects of relational qualities are examined on the relationship between conflicts and performance. To accomplish above-mentioned research objectives, Figure 1 and the following research hypotheses are proposed and verified. III. Measurement and Data Analysis: To verify the proposed research model and hypotheses, data were collected from 97 retailers who are selling Korean electronic products located around Central and Southern regions in China. Covariance analysis and moderated regression analysis were employed to validate hypotheses. IV. Conclusion: The following results were drawn using structural equation modeling and hierarchical moderated regression. First, goal incongruence perceived by local retailers significantly affected conflict but role ambiguity did not. Second, consistent with conflict spiral theory, the level of conflict decreased when retailers' dependency increased toward wholesalers. Third, noncoercive influence strategies such as information exchange and recommendation implemented by wholesalers had significant effects on retailers' performance such as sales and satisfaction without conflict. On the other hand, coercive influence strategies such as threat and legalistic plea had insignificant effects on performance in spite of increasing the level of conflict. Fourth, 'guanxi', namely, relational quality between local retailers and wholesalers showed unique effects on performance. In case of noncoercive influence strategies, 'guanxi' did not play a role of moderator. Rather, relational quality and noncoercive influence strategies can serve as independent variables to enhance performance. On the other hand, when 'guanxi' was well built due to mutual trust and commitment, relational quality as a moderator can positively function to improve performance even though hostile, coercive influence strategies were implemented. Fifth, 'guanxi' significantly moderated the effects of conflict on performance. Even if conflict arises, local retailers who form solid relational quality can increase performance by dealing with dysfunctional conflict synergistically compared with low 'quanxi' retailers. In conclusion, this study verified the importance of relational quality via 'quanxi' between local retailers and wholesalers in Chinese electronic industry because relational quality could cross out the adverse effects of coercive influence strategies and conflict on performance.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.