• Title/Summary/Keyword: Chinese Hamster Lung Cell

Search Result 60, Processing Time 0.023 seconds

Mutagenicity Study of DA-3030, A New Recombinant Human G-CSF(rhG-CSF) (새로운 재조합 인 과립구 콜로니 자극인자 DA-3030의 변이원성연구)

  • 강경구;최성학;김옥진;안병옥;백남기;김계원;김원배;양중익
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.286-291
    • /
    • 1994
  • The mutagenicity of DA-3030(rhG-CSF)was studied by reverse mutation test, chromosome aberration test and micronucleus test. The reverse mutatuon test in bacteria was performed using salmonella typhimurium strain TA100, TA98, TA1535 and TA1537 with rhG-CSF in any of the concentrations(150, 75, 37.5, 18.75, 9.375 and 4,6875 $\mu\textrm{g}$/plate), no increase in the number of revertant colonies in each strain was observed, irrespective of treatment with the metabolic activation system(S-9 mix) The chromosome aberration test was carried out using CHL cells, cell line from chinese hamster lung. With 4 doses(75, 37.5, 18.75 and 9.375 $\mu\textrm{g}$/ml) of rhG-/CSF the cells were treated for 24 or 48 hours in the direct method or for 6 hours followed by 18 hour-expression time in the metabolic activation method. Results of the study showed, by the direct method or metabolic activation method, no trend toward increase in the number of aberrant metaphase. The micronucleus test was carried out using ICR mice at the age of 8 weeks. Three doses(862.5, 1725 and 3450 $\mu\textrm{g}$/kg) of DA-3030 were admintstered intraperitoneally with single shot and bone marrow cells were sampled at 24 hours after administration. Neither the number of polychromatic erythrocytes with micronuclei nor the ratio of normochromatic erythrocytes to polychromatic erythrocytes increased singinficantly in each dose, compared with a vehicle control. These results indicate that rhG-CSF has not mutagenic potential under the condiions.

  • PDF

In vivo and In vitro Chromosome Aberration Test of Gentamicin as a Verterinary Drug (식품에 잔류하는 Gentamicin의 유전독성평가에 관한 연구)

  • Ha, Kwang-Won;Oh, Hye-Young;Kang, Chun;Son, Soo-Jung;Park, Jang-Hwan;Heo, Ok-Soon;Han, Eui-Sik;Kim, So-Hee;Kim, Myung-Hee;Moon, Hwa-Hoi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.249-249
    • /
    • 1996
  • Gentamicin은 임상에서 많이 사용되는 aminoglycoside계 항생물질로서 세균의 세포막 단백질 합성을 억제하여 살균작용을 나타낸다. 최근 Gentamicin이 동물사료에 포함되거나 동물약품으로 많이 사용되어, 이를 복용한 식용가축에서의 잔류 량에 대한 인체유해성이 WHO/FAO 식품첨가물 전문가 협의회에서 논의되고 있다. Gentamicin의 육가공류의 잔류허용량 기준설정을 위한 독성 재평가의 일환으로 in vivo. in vitro 염색체이상시험을 실시하여 다음과 같은 결론을 얻었다. 1. 체외 염색체이상시험에서는 포유동물 배양세포인 chinese hamster lung cell을 배양하여 gentamicin sulfate 및 gentamicin을 최고 처리농도 5mg/$m\ell$부터 세포독성시험을 실시한 결과, 세포독성을 나타내지 않았다. 본 시험에서는 5mg/$m\ell$를 최고농도로 2.5, 1.25mg/$m\ell$의 3농도를 직접법 및 대사활성화법으로 각 농도당 2매의 플레이트씩 슬라이드를 제작, 결과를 판독한 결과, 직접법 및 대사활성화법 모두에서 전 농도 군에서 음성대조군과 같은 정도의 염색체이상을 유발하여 유전독성이 없음을 나타내었다. 2. 체내 염색체 이상시험에서는 ddY마우스를 이용하여 gentamicin sulfate의 LD$_{50}$의 1/2에 해당하는 200mg/kg을 최고농도로 gentamicin 과 gentamicin sulfate를 암수 각각 3마리씩 공비 2의 3농도로 투여한 후, 24시간째 골수세포의 염색체 표본을 제작하여 관찰한 결과, 세포독성 및 염색체 이상을 유발하지 않았다. 또한 동물약품으로 사용되는 치료용량 및 투약방법에 근거하여 10mg/kg 및 5, 2.5mg/kg을 1일 1회씩 4회 투여한 군에서도 암수에 상관없이 전 농도 군에서 염색체이상을 나타내지 않아 유전독성을 나타내지 않음을 관찰하였다.

  • PDF

Evaluation of the Genotoxicity of Decursin and Decursinol Angelate Produced by Angelica gigas Nakai

  • Kim, Kang-Min;Kim, Tae-Ho;Park, Yun-Jung;Kim, Ik-Hwan;Kang, Jae-Seon
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.83-87
    • /
    • 2009
  • In this study, we assessed the stability and toxicological safety of Angelica gigas Nakai (A. gigas Nakai) extract, which is comprised of decursin and decursinol angelate (D/DA). D/DA was tested for mutagenicity using Ames Salmonella tester strains (TA102, TA1535, and TA1537) with or without metabolic activation (S9 mix). No increase in the number of revertants was observed in response to any of the doses tested (1.25, 12.5, 125, and $1,250{\mu}/mLg$). In addition, a chromosome aberration test was conducted in the Chinese hamster lung (CHL) cell line. To accomplish this, cells were treated with D/DA (3.28, 13.12, 52.46, and $209.84{\mu}g/mL$) or with Mitomycin C ($0.1{\mu}/mLg$) as a positive control in the case of no metabolic activation or benzo(a)pyrene ($20{\mu}g/mL$) in the case of metabolic activation. No significant increase in chromosome aberrations was observed in response to treatment with any of these concentrations, regardless of activation of the metabolic system. According to these results, we concluded that D/DA did not induce bacterial reverse mutation or clastogenicity in vitro in the range of concentrations evaluated in these experiments.

Evaluation of Genotoxicity of Water and Ethanol Extracts from Rhus verniciflua Stokes(RVS)

  • Kim, Ji-Young;Oh, Se-Wook;Han, Dae-Seok;Lee, Michael
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.151-159
    • /
    • 2008
  • Rhus verniciflua Stokes(RVS), one of traditional medicinal plants in Asia, was found to have pharmacological activities such as antioxidative and antiapoptotic effects, raising the possibility for the development of a novel class of anti-cancer drugs. Thus, potential genotoxic effects of RVS in three short-term mutagenicity assays were investigated, which included the Ames assay, in vitro Chromosomal aberration test, and the in vivo Micronucleus assay. In Ames test, the addition of RVS water extracts at doses from 313 up to 5000 mg/plate induced an increase more than 2-fold over vehicle control in the number of revertant colonies in TA98 and TA1537 strains for detecting the frame-shift mutagens. The similar increase in reversion frequency was observed after the addition of RVS ethanol extracts. To assess clastogenic effect, in vitro chromosomal aberration test and in vivo micronucleus assay were performed using Chinese hamster lung cells and male ICR mice, respectively. Both water and ethanol extracts from RVS induced significant increases in the number of metaphases with structural aberrations mostly at concentrations showing the cell survival less than 60% as assessed by in vitro CA test. Also, there was a weak but statistically significant increase in number of micronucleated polychromatic erythrocytes(MNPCEs) in mice treated with water extract at 2000 mg/kg while ethanol extracts of RVS at doses of up to 2000 mg/kg did not induce any statistically significant changes in the incidence of MNPCEs. Therefore, our results lead to conclusion that RVS acts as a genotoxic material based on the available in vitro and in vivo results.

In vitro Antimutagenic and Genotoxic Effects of Azadirachta indica Extract (님추출물의 in vitro 항돌연변이원성 및 유전독성 영향)

  • Yoon, Hyunjoo;Cho, Hyeon-Jo;Kim, Jin Hyo;Park, Kyung-Hun;Gil, Geun-Hwan;Oh, Jin-Ah;Cho, Namjun;Paik, Min-Kyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • Azadirachta indica extract (AIE) has been regarded as a promising source of environment-friendly organic materials owing to their low mammalian toxicity. However, quite a bit of research has been reported that AIE may cause clastogens in human lymphocytes. Therefore, this study was conducted to evaluate the antimutagenic and genotoxicity of two samples of AIE. Antimutagenic test was experimented by using bacterial reverse mutation test. In the bacterial reverse mutation test, five strains Salmonella Typhimurim of two samples of AIE in order to evaluate its mutagenic potential. Bacterial reverse mutation test was also performed on positive control and negative control groups in the presence of the metabolic activation system (S-9 mix) and metabolic non-activation system. In the chromosome aberration test, Chinese hamster lung cells were exposed to AIE for 6 or 24 h with BPS, or for 6 h with S-9 mix. Negative and positive control groups were experimented for chromosome aberration test. As a result, the number of mutated colonies induced by 4-NQO were reduced by AIE treatment in all strains, indicating that AIE may have antimutagenic effects. Bacterial reverse mutation and chromosomal aberration were not shown at all concentration of AIE, regardless of activation of the metabolic system. we concluded that two AIE samples used in this study have no genotoxic effects to human, according to the genotoxicity battery system suggested by ICH (International Conference on Harmonization).

In vitro Antimutagenic and Genotoxic Effects of Sophora Radix Extracts (고삼추출물의 in vitro 항돌연변이원성과 유전독성 연구)

  • Cho, Hyeon-Jo;Yoon, Hyunjoo;Park, Kyung-Hun;Lee, Je-Bong;Shim, Chang-Ki;Kim, Jin Hyo;Jeong, Mi Hye;Oh, Jin-Ah;Kim, Doo-Ho;Paik, Min-Kyoung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2013
  • Sophorae radix extract (SRE) has been registered as an environment-friendly organic material that is widely used in the cultivation of crops in Korea. Matrine, the active ingredient in SRE, was reported as a toxic substance in the nervous system in mice. However, no information is available on its toxic effects in other organisms. Therefore, antimutagenicity and two kinds of genotoxicity tests (bacterial reverse mutation and chromosome aberration test) of two samples of SRE were investigated in this study. Antimutagenicity test was experimented by using bacterial reverse mutation test. In the reverse mutation test, Salmonella Typhimurim TA98, TA1535 and TA1537 were used to evaluate the mutagenic potential of SRE. Bacterial reverse mutation test was also performed on positive and negative control groups in the presence of the metabolic activation system (with S-9 mix) and metabolic non-activation system (without S-9 mix). In the chromosome aberration test, Chinese hamster lung cells were exposed to SRE for 6 or 24 hours without S-9 mix, or for 6 hours with S-9 mix. Negative and positive control groups were experimented for chromosome aberration test. As a result, the number of mutated colonies induced by 4-NQO were reduced by SRE treatment in all strains, indicating that SRE may have antimutagenic effects. Reverse mutation was not shown at all concentrations of SRE, regardless of application of the metabolic activation system. In the chromosomal aberration test, one of the SRE sample gave a suspicious positive result at 250 ${\mu}g/ml$ in the presence of S-9 mix. For the more adequate evaluation of the genotoxic potential of SRE samples, other in vivo genotoxicity study is needed.

Effects of carbendazim on DNA, gene and chromosome (살균제 carbendazim이 DNA, 유전자 및 염색체에 미치는 영향)

  • Lee, Je-Bong;Sung, Pil-Nam;Jeong, Mi-Hye;Shin, Jin-Sup;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2004
  • Benzimidazole pesticide carbendazim that is effective against a wide range of fungal plant pathogens is a protective, eradicant, and systemic fungicide. For genetic toxicity evaluation of carbendazim on DNA, genes and chromosome, were investigated with chromosome aberration, bacterial reverse mutation, micronucleus test in mouse born marrow and DNA damage assay by single cell microgel electrophoresis. Substitution and frameshift mutation were not induce at variable concentration of carbendazim on Ames test with or without rat liver microsomal activation. For the result of chromosome aberration test, numerical changes of chromosome were detected at the concentrations higher than $4.0{\mu}g/m{\ell}$, but structural aberration was not induced. Positive control, Mitomycin-C and captafol made a structural aberration, but numerical change of chromosome did not appear. In the micronucleus test for mouse born marrow, carbendazim was negative, but was weak positive in DNA damage assay by single cell microgel electrophoresis because of increased DNA moving length of 20% to control.

Studies on Genetic Toxicity of Epoxidized Soy Bean Oil (에폭시화 대두유의 유전독성 연구)

  • 한의식;정해관;김종원;박미선;엄미옥;강혁준;민수진;오혜영
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • EpoxidiBed soy bean oil (ESBO) is a plasticizer of PVC which is being widely used as a gaskets for the lid of glass jars including baby food. Using reverse mutation assay, chromosome aberration test and micronucleus test, ESBO were evaluated the mutagenicity. In the reverse mutation test, ESBO did not induced mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA102 with and without metabolic activation. In the chromosome aberration test using CHL cells, the results showed no increased structural and numerical aberrations in the concentration of sample producing cytotoxicity with and without metabolic activation. The in vivo induction of micronuclei was measured in polychromatic erythrocytes of bone marrow of young (3weeks old) and adult (6 weeks old) ddY mice of both sex. At 24 hours after treatment with ESBO 20, 10, 5, 2.5 g/B.W. kg/corn oil 10 ml by oral route animals were sacrificed and bone marrow cells were prepared for smear slides. The results showed no increased micronucleated polychromatic erythrocytes regardless of sex and age. It was concluded that water soluble ESBO did not show certain genotoxicity within our studies conducted.

  • PDF

Mutagenecity evaluation of insecticidal 2-carbomethoxy-4-chlorodiethyl phosphate in short-term bioassays (살충성 물질 2-carbomethoxy-4-chlorodiethyl phosphate의 유전독성 평가)

  • Lee, Je-Bong;Sung, Ha-Jung;Jeong, Mi-Hye;Kwon, Oh-Kyung;Lee, Hae-Keun;Kim, Young-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • For evaluating the mutagenic potential of 2-carbomethoxy-4-chlorodiethyl phosphate, three different short-term mutagenicity tests were used; Salmonella typhimurium preincubation assay with and without rat liver microsomal activation, chromosome aberration test in cultured chinese hamster lung fibroblast cell and in vivo micronucleus test in male mice bone marrow. In Salmonella typhimurium reverse mutation assay using TA98, TA100, TAl535 and TAl537, 2-carbomethoxy-4-chlorodiethyl phosphate did not show any mutagenic response in the presence and absence of S9 mix. It did not induce any significant structural chromosome aberrations in the absence of metabolic activation. In micronucleus test using ICR mice, the frequency of micronucleated polychromatic erythrocytes (MNPCE) increased in bone marrow cells treated with positive control, mitomycin-C, but 2-carbomethoxy-4-chlorodiethyl phosphate did not increase micronucleated polychromatic erythrocytes. These results indicate that 2-carbomethoxy-4-chlorodiethyl phosphate does not show any positive responses in short-term genotoxicity assays.

  • PDF

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.