• Title/Summary/Keyword: Chilling requirement

Search Result 24, Processing Time 0.016 seconds

Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns (경과기온 양상에 따른 신고 배의 지역별 개화예측모델 평가)

  • Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.268-278
    • /
    • 2020
  • Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.

Bud Development and Bud Break Characteristics in Water Cuttings of 'Campbell Early' Grapevine during Dormancy ('캠벨얼리' 포도의 휴면기 눈 발달 및 수삽을 통한 발아 특성 조사)

  • Lee, ByulHaNa;Park, YoSup;Kwon, YongHee;Han, Jeom-Hwa;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.202-209
    • /
    • 2015
  • In this study, we investigated the cumulative effect of low temperature on bud dormancy release and bud break characteristics in 'Campbell Early' grapevine (Vitis labruscana B.) cuttings grown in water culture. Additionally, we observed the development of buds while exposed to low temperatures in an attempt to improve our understanding of dormancy and bud break. The shoots were collected 120 days after full bloom (DAFB; leaf abscission period), and the accumulated chill unit (CU) value was calculated by reducing the temperature to $7.2^{\circ}C$ at 125 DAFB. The rate of bud break was 100% in shoots collected at 150 DAFB, The period until the first bud break was two times longer than in the shoots collected 165 DAFB, and bud break speed was significantly reduced. These results indicate that buds are released from endodormancy after 165 DAFB, because at this point the bud break was complete (bud break rate 100%) and it occurred in a very short time period. During this period, when the low-temperature accumulated value was 321h and 442CU according to the CH and Utah models, respectively. Furthermore, the survival rate of main buds decreased rapidly after 165 DAFB, and survival rate of accessory buds was maintained at more than 90% without seasonal differences. The rate of flower bud formation of main buds was much higher than in accessory buds (1:0.23) before the release from endodormancy at 150 DAFB. The final ratio of accessory buds to main buds was high, 1:1.54, at 255 DAFB. Correlation analysis of each investigated factor revealed that bud survival rate and bud formation rate were related only for the main buds, and there was a close relationship between the survival rate of main bud and time. In addition, the survival rate of main buds was positively correlated to the rate of flower bud formation.

Effect of Planting Time on Growth and Yield of Artichoke (Cynara scolymus L.) for Non-Heated Cultivation in Jeju Island (제주지역에서 무가온 하우스재배시 아티초크 정식시기가 생육 및 수량에 미치는 영향)

  • Seong, Ki-Cheol;Kim, Chun-Hwan;Moon, Doo-Kyong;Lee, Jin-Su
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This experiment was carried out to investigate the effect of planting times on the growth and yield of artichoke (Cynara scolymus L.) in non-heated greenhouse in Jeju Island ($33^{\circ}28.110N,\;126^{\circ}31.076E$), Korea. Five transplanting dates (from Feb. 25 to Apr. 30) of the first half of the year and six transplanting dates (from July 30 to Dec. 15) of the second half of the year were compared. In the spring cycle, most of the flower buds emerged from May to June, and the emergence was slightly earlier in 'Imperial Star' than in 'Green Globe'. The earliest harvest on June 16 was 'Imperial Star' which was planted on Feb. 25. The highest yield of 856 kg/10a was observed in 'Imperial Star' which was planted on Feb. 25. Transplanting of the first half of the year, it was impossible to harvest in the same year when the planting was done after April 15 since the flower buds were not emerged. The flower buds emerged from late Feb. to middle April of the following year in the all planting times of the second half of the year. It was possible to harvest the first time in early April. The highest yield was 2,127 kg/10a in 'Green Globe' which was planted on July 30, and the yields decreased as the planting times were delayed. In the comparisons of planting times of artichoke, it would be recommendable to plant artichoke on Feb. 25 for the same year harvest and in July 30~Oct. 15 for the following year harvest in Jeju Island non-heated greenhouse cultivation.

Spring Phonology of a Grapevine Cultivar under the Changing Climate in Korea during 1921-2000 (겨울기온 상승에 따른 낙엽과수의 휴면생태 변화)

  • Jung Jea-Eun;Seo Hee-Cheol;Chung U-Ran;Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • Remarkable winter season warming has been observed in East Asian countries during the last century. Accordingly, significant effects on dormancy and the resulting budburst of deciduous trees are expected. However phenological observations are rare and insufficient compared with the long-time climate records in the same region. A chill-day accumulation, which can be estimated from daily maximum and minimum temperature, is expected to make a reasonable proxy for dormancy depth of temperate zone fruit trees. To simulate dormancy depth during 1921-2004, a chill-day model parameterized for 'Campbell Early' grapevine, which is the major cultivar grown virtually anywhere in South Korea, was applied to daily temperature data at 8 locations in South Korea. The calculations showed that the chilling requirement for breaking endo-dormancy of this grapevine cultivar can be satisfied by mid-January to late February in South Korea, and the date was delayed going either northward or southward from the 'Daegu-Jeonju' line crossing the middle of South Korea in the east-west direction. Maximum length of the cold tolerant period (the number of days between endo-dormancy release and forced dormancy release) showed the same spatial pattern. When we divide the 83 years into 3 periods (I: 1921-1950, II: 1951-1980, and III: 1981-2004) and get the average of each period, dormancy release date of period III was accelerated by as much as 15 days compared with that of period I at all locations except Jeju (located in the southernmost island with subtropical climate) where an average15-day delay was predicted. The cold- tolerant period was also shortened at 6 out of 8 locations. As a result, budburst of 'Campbell Early' in spring was accelerated by 6 to 10 days at most locations, while inter-annual variation in budburst dates was increased at all locations. The earlier budburst after the 1970s was due to (1) warming in winter resulting in earlier dormancy release (Incheon, Mokpo, Gangneung, and Jeonju), (2) warming in early spring accelerating regrowth after breaking dormancy (Busan and Jeju), and (3) both of them (Seoul and Daegu).