DOI QR코드

DOI QR Code

Bud Development and Bud Break Characteristics in Water Cuttings of 'Campbell Early' Grapevine during Dormancy

'캠벨얼리' 포도의 휴면기 눈 발달 및 수삽을 통한 발아 특성 조사

  • Lee, ByulHaNa (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Park, YoSup (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Kwon, YongHee (Fruit Research Division, National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA)) ;
  • Han, Jeom-Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA)) ;
  • Park, Hee-Seung (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University)
  • 이별하나 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 박요섭 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 권용희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 박희승 (중앙대학교 생명자원공학부 식물시스템과학전공)
  • Received : 2014.03.19
  • Accepted : 2014.12.03
  • Published : 2015.04.30

Abstract

In this study, we investigated the cumulative effect of low temperature on bud dormancy release and bud break characteristics in 'Campbell Early' grapevine (Vitis labruscana B.) cuttings grown in water culture. Additionally, we observed the development of buds while exposed to low temperatures in an attempt to improve our understanding of dormancy and bud break. The shoots were collected 120 days after full bloom (DAFB; leaf abscission period), and the accumulated chill unit (CU) value was calculated by reducing the temperature to $7.2^{\circ}C$ at 125 DAFB. The rate of bud break was 100% in shoots collected at 150 DAFB, The period until the first bud break was two times longer than in the shoots collected 165 DAFB, and bud break speed was significantly reduced. These results indicate that buds are released from endodormancy after 165 DAFB, because at this point the bud break was complete (bud break rate 100%) and it occurred in a very short time period. During this period, when the low-temperature accumulated value was 321h and 442CU according to the CH and Utah models, respectively. Furthermore, the survival rate of main buds decreased rapidly after 165 DAFB, and survival rate of accessory buds was maintained at more than 90% without seasonal differences. The rate of flower bud formation of main buds was much higher than in accessory buds (1:0.23) before the release from endodormancy at 150 DAFB. The final ratio of accessory buds to main buds was high, 1:1.54, at 255 DAFB. Correlation analysis of each investigated factor revealed that bud survival rate and bud formation rate were related only for the main buds, and there was a close relationship between the survival rate of main bud and time. In addition, the survival rate of main buds was positively correlated to the rate of flower bud formation.

본 연구는 수삽을 이용한 'Campbell Early' 포도나무의 발아 특성 관찰을 통해 눈의 내재 휴면 타파를 위한 저온축적과의 관계를 구명하고, 저온에 노출되는 동안 눈의 발달 양상을 관찰하여 발아와 휴면에 대한 기초자료를 마련하고자 하였다. 만개 120일 후(낙엽기 : 10월 7일)부터 시료를 수집하여 수삽하였으며, 만개 후 125일부터 온도가 $7.2^{\circ}C$도 이하로 내려가 CU 축적이 시작되었다. 발아율은 만개 150일 이후부터 100% 발아하였으나 165일 이후 수집된 가지에 비해 최초 발아까지의 기간이 2배 이상 소요되어 발아속도가 현저히 떨어졌다. 즉, 만개 165일 이후에는 100% 발아할 뿐만 아니라 발아 소요일수가 짧아 내재 휴면이 완전히 타파된 것으로 판단되었다. 이 기간 동안 CH 모델과 Utah 모델에 의한 저온 적산 값 계산 시, 각각 321h와 442CU로 조사되었다. 또한 이 시기 이후부터 주아의 생존율이 급격히 감소하였고, 제 1 부아의 생존율은 시기적인 차이 없이 90% 수준으로 높게 유지되었다. 화아형성이 이루어진 눈을 대상으로 조사된 주아 대비 부아의 비율은 내재 휴면이 타파되기 이전인 만개 후 150일에는 1:0.23으로 주아의 비율이 월등히 높았으나, 내재 휴면이 타파된 이후 최종적으로 만개후 255일에 이르러서는 1:1.54로 주아에 비해 부아의 비율이 높게 나타났다. 액아의 생존율 및 화아형성율과의 각 조사항목 간 상관분석에서는 주아에서만 상관관계가 인정되어 주아의 생존율 자체는 시기와 가장 밀접한 관련을 나타내었고, 주아의 생존율과 화아형성률 사이에 높은 정의 상관관계가 나타났다.

Keywords

References

  1. Alburqureque, A., F. Garcia-Montiel, A. Carrillo, and L. Burgos. 2008. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ. Exp. Bot. 64:162-170. https://doi.org/10.1016/j.envexpbot.2008.01.003
  2. Andreini, L., R. Vrri, and G. Scalabrelli. 2009. Study on the morphological evolution of bud break in Vitis vinifera L. Vitis 48:153-158.
  3. Balandier, P., M. Bonhomme, R. Rageau, F. Capitan, and E. Parisot. 1993. Leaf bud endodormancy release in peach trees: evaluation of temperature models in temperate and tropical climate. Agr. Forest Meteorol. 67:95-113. https://doi.org/10.1016/0168-1923(93)90052-J
  4. Baldocchi, D. and S. Wong. 2008. Accumulated winter chill is decreasing in the fruit growing regions of California. Clim. Change 87:153-166. https://doi.org/10.1007/s10584-007-9367-8
  5. Chandler, W.H. 1942. Deciduous orchards. Lea & Febiger, Philadelphia.
  6. Choi, I.M., C.H. Lee, Y.P. Hong, and H.S. Park. 2007. Relation between shoot vigour and bud necrosis in 'Campbell Early' grapevines. Kor. J. Hort. Sci. Technol. 25:375-381.
  7. Dokoozlian, N.K. 1999. Chilling temperature and duration interact on the budbreak of 'Perlette' grapevines cuttings. HortScience 34:1-3.
  8. Jung, J.E., H.C. Seo, U. Chung, and J.I. Yun. 2006. Spring phenology of a grapevine cultivar under the changing climate in Korea during 1921-2000. Kor. J. Agr. For. Meteorol. 8:116-124.
  9. Kim, E.J., B.H.N. Lee, Y.H. Kwon, K.H. Shin, K.H. Chung, S.J. Park, and H.S. Park. 2011. Bud necrosis characteristics of 'Hongisul' grape. Kor. J. Hort. Sci. Technol. 29:407-412.
  10. Kwon, E.Y., G.C. Song, and J.I. Yun. 2005. Prediction of dormancy release and bud burst in Korean grapevine cultivars using daily temperature data. Kor. J. Agr. For. Meteorol. 7:185-191.
  11. Kwon, Y.H., E.J. Kim, S.J. Park, H.C. Lee, K.B. Ma, and H.S. Park. 2011. Axillary bud development and necrosis for 'Heukgoosul' grapevine. J. Bio-Environ. Cont. 20:382-386.
  12. Lavee, S. and P. May. 1997. Dormancy of grapevine buds - facts and speculation. Austral. J. Grape Wine Res. 3:31-46. https://doi.org/10.1111/j.1755-0238.1997.tb00114.x
  13. Lavee, S., H. Melamud, M. Zia, anpered, and Z. Bernstein. 1981. Necrosis in grapevine buds (Vitis vinifera cv. Queen of Vineyard) 1. Relation to vegetative vigor. Vitis 20:8-14.
  14. Lavee, S., Y. Shulman, and G. Nir. 1984. The effect of cyanamide on budbreak of grapevines Vitis vinifera L. 17-29. In: R.J. Weaver (ed.). Proc. of Symp. on bud dormancy in grapevine.
  15. Luedeling, E. and P.H. Brown. 2011. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. Biometeorol. 55:411-421. https://doi.org/10.1007/s00484-010-0352-y
  16. McColl, C.R. 1986. Cyanamide advances the maturity of table grapes in central Australia. Austral. J. Expt. Agr. 26:505-509. https://doi.org/10.1071/EA9860505
  17. Mohamed, H.B., A. M. Vadel. J.M.C. Geuns, and H. Khemira. 2010. Biochemical change in dormant grapevine shoot tissue in response to chilling: Possible role in dormancy release. Sci. Hortic. 124:440-447. https://doi.org/10.1016/j.scienta.2010.01.029
  18. Perez, F.J. and W. Lira. 2005. Possible role of catalase in post-dormancy bud-break in grapevines. J. Plant Physiol. 162:301-308. https://doi.org/10.1016/j.jplph.2004.07.011
  19. Pratt, C. 1979. Shoot and bud development during the prebloom period of Vitis. Vitis 18:1-5.
  20. Ramina, A., M. Colauzzi, A. Masia, A. Pitacco, T. Caruso, R. Messina, and G. Scalabrelli. 1995. Hormonal and climatological aspects of dormancy in peach buds. Acta Hortic. 95:35-45.
  21. Rea. R. and E. Eccel. 2006. Phenological models for blooming of apple in a mountainous egion. Int. J. Biometeorol. 51:1-16. https://doi.org/10.1007/s00484-006-0043-x
  22. Richardson, E.A., S.D. Seeley, and D.R. Walker. 1974. A model for estimating the completion of rest for 'Redhaven' and 'Elberta' Peach Trees. HortScience. 9:331-332.
  23. Sabry, G.H., H.A. El-helw, and A.S. El-Rahman. 2011. A study on using jasmine oil as a breaking bud dormancy for flame seedless grapevines. Rep. Opin. 3:48-56.
  24. Sagredo, K.X., K.I. Theron, and N.C. Cook. 2005. Effect of mineral oil and hydrogen cyanamide concentration on dormancy breaking in 'golden deilcious' apple trees. S. Afr. J. lant Soil. 22:251-256. https://doi.org/10.1080/02571862.2005.10634716
  25. Shulman, Y., G. Nir, L. Fanberstein, and S. Lavee. 1983. The effect of cyanamide on the elease from dormancy of grapevine buds. Sci. Hortic. 19:97-104. https://doi.org/10.1016/0304-4238(83)90049-3
  26. Terzo-Martinez, M.A., J.A. Orozco, G. Almaguer-Vargas, E. Carvajal-Millan, and A.A. Gardea. 2009. Metabolic activity of low chilling grapevine buds forced to break. Thermochim. Acta 481:28-31. https://doi.org/10.1016/j.tca.2008.09.025
  27. Vasudevan, L., T.K. Wolf, G.G. Welbaum, and M.E. Wisniewski. 1998. Anatomical developments and effects of artificial shade on bud necrosis of Riesling grapevines. Amer. J. Enol. Vitic. 49:429-439.
  28. Weaver, R.J. and K. Iwasaki. 1977. Effect of temperature and length of storage, root growth and termination of bud rest in 'Zinfandel' grapes. Amer. J. Enol. Vitic. 28:149-151.

Cited by

  1. Transcriptomic changes in dormant buds of two grapevine cultivars following exposure to freezing temperature vol.58, pp.2, 2017, https://doi.org/10.1007/s13580-017-0147-8
  2. Predicted Effects of Climate Change on Winter Chill Accumulation by Temperate Trees in South Korea vol.87, pp.2, 2015, https://doi.org/10.2503/hortj.okd-089