• Title/Summary/Keyword: Child passenger

Search Result 14, Processing Time 0.021 seconds

The comparison and analysis of facilities factor of rolling stock interior design (철도차량 실내디자인 공간요소 비교분석)

  • Lee Jun-One
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.449-454
    • /
    • 2004
  • As social and cultural value has been changed, customers are demanding equipment innovation of passenger quarters to improve the satisfaction of their needs and the level of transfortation culture. To promote the convenience of passenger and abstract the facilities factor of passenger quarters design, this article analyzed and compared with the facilities factor of passenger quarters which have been operated in domestic and foreign country. While domestic passenger quarters is composed of seat, toilet and washroom, foreign passengers quarters consist of various factor such as familly room, infant room, business room, conversation room, and multipurpose room. Especially, foreign passenger quarters have provided passenger with diversity of attachment space, securing movement line for weak person, and arranging infant/child's space.

  • PDF

A Study on the Passenger Airbag Design Parameters Influencing Child Injury (어린이 상해에 영향을 주는 조수석 에어백 설계 인자에 대한 연구)

  • Choi, Won-Jung;Kim, Kwon-Hee;Ko, Hun-Keon;Kim, Dong-Seok;Son, Chang-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • The passenger airbag(PAB) designed for standard sized adults may induce unexpected results to children in out-of-position(OOP) postures. In this work, using MADYMO software, simulations of the OOP injury of children have been performed with respect to PAB design parameters and child dummy positions. The attention is focused on some details with respect to the injury of 3 and 6 year old children in two OOP postures. Among the various design parameters of the passenger airbag systems, four parameters are selected for the sensitivity analysis of the injury with the Taguchi method: bag folding pattern, vent hole size, position of the cover tear seam and the type of door tear seam. An optimal combination of the parameters is suggested.

A Study on Child Restraints System for Q10 dummy in frontal sled test (Q10 더미를 이용한 어린이용 안전장치 동적 성능 평가)

  • Kim, Seungki;Oh, Hyungjoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Recently, Child safety has become one of the issue with Q10 dummy representing large child. The objective of this paper was to evaluate performance of three child restraints system (backless booster, high-back booster and without booster) by changing D-ring location in the rear seat. Sled tests were carried out with a Q 10 in 64km/h frontal impact. Before the dynamic sled tests, we assessed dummy positioning with difference in CRS types and height adjustment positions. Dynamic sled test results indicated that there is different performance of CRS types and belt routing. These test results will use as base line data for development CRS safety performance for Q 10.

A Review of Child Safety Seats for Promoting Children's Traffic Safety (승용차 탑승 아동의 안전을 위한 차량 내 아동 보호장구에 관한 고찰)

  • Lee, Ja-Hyung;Kim, Ji-Hyun
    • Korean Parent-Child Health Journal
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2007
  • Purpose: Motor vehicle crashes are the leading cause of death among children younger than 14 years old. The purposes of this study were to 1) provide a basic overview of child safety seats, 2) review car seat safety usage and misuse, 3) suggest interventions to motivate the usage of child safety seats. Method: The design was a descriptive study with literature review. Previous studies were searched of PUBMED, ProQuest and KERIS. Result: Child safety seats and automobile safety belts protect children in a crash if they are used correctly, but if a child does not fit in the restraint correctly, it can lead to injury. A child safety seat should be used until the child correctly fits into an adult seat belt. Conclusion: To improve child passenger's safety, educational, legislational and environmental enforcements are needed: educational interventions to promote use of child safety seats, strengtened legislation to mandate use of child safety seats, establishment of public acquirements.

  • PDF

DEVELOPMENT OF OCCUPANT CLASSIFICATION SYSTEM BASED ON DISTRIBUTED SYSTEM INTERFACE

  • Chang, K.B.;Lee, C.K.;Park, G.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.195-199
    • /
    • 2006
  • According to the United States FMVSS 208, every passenger car on the market after September of 2006 must install a safety system, which can deploy the airbag with different intensity or suppression based on the passenger type, to reduce infant and child injuries from airbag deployments. The Weight Classification System, which has been developed by Hyundai Autonet, is a system that classifies the person occupying the passenger seat. To overcome sensing problems due to the weight sensors small voltage, the Distributed Systems Interface is adopted.

Fabrications and Characteristics of Infrared Sensor for Passenger Conditional Detection in Vehicle (차량 내 탑승자 상태 인식용 적외선 센서의 제조 및 특성)

  • Lee, Sung-Hyun;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A noble infrared sensor was studied for passenger conditional detection in vehicle, This research relates to uncooled infrared sensors for detecting the presence, type and temperature of occupants in vehicle. It sense that the occupants purpose to control the smart airbag for safety in the case of adult or child and to control the automatic air conditioning for convenience. This paper described the design and the fabrication of microbolometers which were composed of 2 by 8 elements using the surface micromachining technology. The characteristics of the array were investigated in the spectral region of $8{\sim}12{\mu}m$. The fabricated detectors exhibited the thermal mass of $7.05{\times}10^{-9}\;J/K$, the thermal conductance of $1.03{\times}10^{-6}\;W/K$, the thermal time constant of 6.8 ms, the responsivity of $2.96{\times}10^4\;V/W$ and the detectivity of $1.01{\times}10^9\;cmHz^{1/2}/W$, at the chopper frequency of 10 Hz and the bias current of $4.4{\mu}A$. We could successfully detect the human body condition in the divided zone. As a results, we concluded that microbolometer optimized in this research could be useful for the application of passenger conditional detection in vehicle.

Current use of safety restraint systems and front seats in Korean children based on the 2008-2015 Korea National Health and Nutrition Examination Survey

  • Kong, Seom Gim
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.12
    • /
    • pp.381-386
    • /
    • 2018
  • Purpose: The use of proper safety restraint systems by children is vital for the reduction of traffic accident-related injury and death. This study evaluated the rates of use of safety restraint systems and front seats by Korean children. Methods: Based on data from the National Health and Nutrition Examination Survey from 2008 to 2015, I investigated the frequencies of safety restraint systems and front seat use by children under six and 12 years of age, respectively. Results: The percentage of respondents who said they always use safety restraint systems increased from 17.7% in 2008 to 45.0% in 2015. The rate of children who did not use the front seats at all was 47.3 % in 2008 compared to 33.4% in 2015. Multivariate logistic regression analysis showed a decrease in safety-restraint-system use as age increased (odds ratio, 0.63; 95% confidence interval [CI], 0.51-0.77). The use rate of front-passenger seat belts by the mother is significantly correlated with the safety-restraint-system use rate by children (odds ratio, 2.14; 95% CI, 1.12-4.06). Conclusion: Although the rate of safety-restraint-system use for children is increasing annually, it remains low. Additionally, the use rate of front passenger seats for children is high. To reduce the rates of injury and death of children from traffic accidents, it is necessary to educate on the appropriate use of safety restraint systems according to age and body size and to develop stronger regulations.

Injury Study of Older Children Anthropomorphic Test Device with CRS Harness Belt and Vehicle Level Crash Test (CRS 하네스 벨트 사용에 따른 어린이 인체 모형 상해 연구 및 실차 레벨 충돌 평가)

  • Kang, Seungkyu;Yang, Minho;Kim, Jeonghan;Jin, Jeongmoon;Lee, Sooyul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • For years, Q1.5 (anthropomorphic test device for 1.5 years old infant) and Q3 (anthropomorphic test device for 3 years old infant) dummy protection has been improved considerably by the effort of EuroNCAP. ISOFIX strength of vehicle structure has increased and many child occupant protection tests have made child restraint system (hereafter CRS) optimized for child safety. However, from 2016, EuroNCAP changed the dummy which is used for the child occupant protection from Q1.5/Q3 to Q6/Q10 and these were also adopted in KNCAP from 2017. Therefore, a new method is required to secure the safety for older children In this research, child dummies were tested by using adult safety systems, and the different results from each adult restraint system were compared. Finally, dummies were tested with the CRS harness belt commonly used for infants, which has yielded significant result. In this research, mid-sized sedan and small SUV were used for the test. The researchers of this paper performed sled tests to correlate between the different adult safety belt system and child injury. Following the sled test, an actual vehicle test was conducted to gather the injury data of Q-dummy with the CRS harness belts. This paper will show the advantages of applying a pre-tensioner in the second row for child protection and the necessity of CRS which has its own harness belts to improve safety for older children.

Injury Analysis of Child Passenger According to the Types of Safety Restraint Systems in Motor Vehicle Crashes (영유아 탑승자의 차량사고에서 보호장구에 따른 손상 분석)

  • Sung, Kang Min;Kim, Sang Chul;Jeon, Hyuk Jin;Kwak, Yeong Soo;Youn, Young Han;Lee, Kang Hyun;Park, Jong Chan;Choi, Ji Hun
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.98-103
    • /
    • 2015
  • Purpose: To compare injury sustained and severity of child occupant according to the types of safety restraint systems in motor vehicle crashes. Methods: This was a retrospective observational study. The study subjects were child occupants under the age of 8 years who visited a local emergency center following a motor vehicle crash from 2010 to 2014. According to safety restraint: child restraint systems (CRS), belted, and unbelted, we compared injuries sustained and injury severity using the maximal Abbreviated Injury Scale (MAIS) and Injury Severity Score (ISS), and analyzed the characteristics of severe injuries (AIS2+). Results: Among 241 subjects, 9.1% were restrained in CRS, 14.5% were only belted, and 76.3% was unbelted at the time of the crashes. Fourteen had severe injuries (AIS2+), all of whom didn't be restrained by CRS. Injuries in face and neck were the highest in unbelted group, and MAIS and ISS were the lowest in CRS group. Conclusion: Among safety restraint systems for child occupant in motor vehicle crashes, the CRS have the preventive effect of face and neck injuries, and are the most effective safety restraint systems.

  • PDF

SIMPLE AND EFFECTIVE METHOD TO PREDICT THE OCCUPANT DYNAMIC RESPONSE UNDER SUDDEN IMPULSE LOADS

  • Elmarakbi, A.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.769-776
    • /
    • 2006
  • A mathematical model is developed in this paper to define the interaction between the occupant and vehicle passenger compartment and to predict the occupant dynamic response during a sudden impulse load. Two different types of occupants are considered in this study, child and adult occupants. The occupants are considered as lumped masses connected to the child seat and vehicle's body masses by means of restraint systems. In addition, the occupant restraint characteristics of seat belt and airbag are represented by stiffness and damping elements. To obtain the dynamic response of the occupant, the equations of motion of the occupants during vehicle collisions are developed and analytically solved. The occupant's acceleration and relative displacement are used as injury criteria to interpret the results. It is demonstrated from the numerical simulations that the dynamic response and injury criteria are easily captured and analyzed. It is also shown that the mathematical models are flexible, useful in optimization studies and it can be used at initial design stage.