• Title/Summary/Keyword: Chicken ES Cells

Search Result 4, Processing Time 0.018 seconds

In vitro culture of chicken embryonic stem cell-like cells

  • Bo Ram Lee;Hyeon Yang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.

Identification of Putative Embryonic Stem Cells Derived from Embryonic Blastodermal Cells of Fertilized Hen′s Eggs (닭 배반엽세포로부터 유래된 잠정적 배아주세포의 동정)

  • Lee, K.S.;Lee, H.;Kim, K.D.;Park, Seong-Su;Lee, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2000
  • Embryonic stem (ES) cells are pluripotent cell lines, which derived from preimplantation embryo. These cells have been used as a vehicle of foreign DNA for production of transgenic mammals. this experiment was performed to examined the possible use of blastodermal cells derived from hen's egg for germline manipulation. Stage X blsdtodermal cells isolated from fertilized eggs were cultured in DMEM containing 15% fetal calf serum. Blastodermal cells wre co-cultured on the chicken embryonic fibroblast (CEF) or mouse embryonic fibroblast(MEF) cells. to examine the effects of growth factors on stem cell growth, bFGF and LIF were added. There was no significant difference in colony formation of putative ES cells between CEF and MEF as a feederlayer, but the addition of growth factors enhanced the proliferation and inhibited differentiation of blastodermal cells. To characterize the cell colonies as a putative ES cells, putative embryonic cell colonies were stained by periodic acid Schiffs (PAS) reagent. The putative ES cell colonies showed intensive positive reaction similar to the property of undifferentiated PGC upto 20days in vitro, but not in other cell types. this result demonstrates that PAS-positive cell colonies may be used for the study of establishment of chicken ES cell lines for the production of transgenic chicken.

  • PDF

The Investigation of Cell Culture Conditions to Maintain Chicken Embryonic Stem Cells as Totipotent Cells

  • Du, Lixin;An, Jing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1102-1107
    • /
    • 2003
  • The ES cell can provide a useful system for studying differentiation and development in vitro and a powerful tool for producing transgenic animalds. To investigate the culture condition of chicken embryonic stem (CES) cells which can retain their multipotentiality or totipotency, three kinds of feeder layer cells, SNL cells, primary mice embryonic fibroblasts (PMEF) cells and primary chicken embryonic fibroblasts (PCEF) cells, were used as the feeder cells in media of DMEM supplemented with leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and stem cell factor (SCF) for co-culture with blastoderm cells from stage X embryos of chicken. The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The results showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The typical CES cells clone shape revealed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong alkaline phosphatase (AKP) reactive cells were observed in the fourth passage cells. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2% (22/269) survived to hatching, 5 feather chimeras had been produced. This suggests that an effective culture system established in this study can promote the growth of CES cells and maintain them in the state of undifferentiated and development, which lays a solid foundation for the application of CES cells and may provide an alternative tool for genetic modification of chickens.

Chemical and Functional Characteristics of Mechanically Deboned Chicken Meat and its Utilization in Processed Meat -I. Chemical and Functional Characteristics of Mechanically Deboned Chicken Meat- (기계발골가금육(機械拔骨家禽肉)의 특성(特性) 및 이용(利用)에 관(關)한 연구(硏究) -제(第) 1 보(報) : 기계발골가금육(機械拔骨家禽肉)의 특성(特性)-)

  • Ahn, Byung-Yoon;Kim, Jong-Won;Lee, Yu-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.171-175
    • /
    • 1981
  • Hand deboned and mechanically deboned chicken meat were produced from domestic broilers and spent layers. Meat yield, chemical composition, functional characteristics, storage stability and microbiogical properties were investigated. The results obtained were as follows: 1. 35% of carcass freight was recovered primarily as hand deboned chicken meat (HDM) and 45% secondarily as mechanically deboned chicken meat(MDM), total meat yield reaching 80% of carcass weight. 2. Moisture, protein, fat. ash and calcium content of MDM were 65, 12, 20, 1.7 and $0.2{\sim}0.4%$, respectively MDM was higher than HDM in fat, ash and calcium, but significantly lower in moisture and protein Total pigment content of MDM was 2.5 times higher than that of HDM, such high content being attributed to the increased inclusion of hemoglobin during the mechanical masceration of carcass in the deboning process. 3. The emulsifying capacity (ES) of MDM per g meat was only 70% that of HDM, but when ES was expressed on unit g of protein basis MDM showed even higher ES than HDM primarily due to the higher proportion of salt soluble protein fraction of MDM. 4. Since the TBA value of MDM increased rapidly after 4 weeks of frozen storage at $-20^{\circ}C$, the maximum possible storage period of MDM is estimated to be about 4 weeks. 5. Total microbial counts of MDM was approximately $1.8{\times}10\;cells/g$ showing no great difference from HDM or red meat.

  • PDF