Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.
본 논문에서는 흥부 CT 영상에서 폐 부위를 효율적으로 자동 분할하기 위한 하이브리드 접근기법을 제안한다. 본 제안방법은 다음과 같은 세 단계로 구성된다 첫 번째, 2, 3차원 자동 씨앗 영역성장법과 저해상도 연결요소 레이블링을 통하여 폐와 기관지를 분할한다. 두 번째, 2차원 형태학적 연산을 반복 적용하여 폐와 기관지를 분리한 후 저해상도 연결요소 레이블링을 이용하여 폐만 분할한다. 세 번째, 영상차감 기법을 사용한 폐 영역 보정을 통해 보다 정확한 폐 영역을 얻는다. 실험에서는 5명의 환자로부터 얻은 10개의 흉부 CT 영상을 사용하여 제안방법의 정확성과 효율성을 평가한다. 제안한 자동 분할 기법의 적용 결과를 전문가에 의한 수동 분할 결과와 비교함으로써 정확성을 평가하고, 수행시간과 메모리 사용량을 분석하여 제안방법의 효율성을 평가한다. 제안한 저해상도 연결요소 레이블링을 사용했을 때 수행시간은 평균 31.4초, 최대 메모리 사용량은 평균 196.75MB가 단축된다. 본 제안방법은 혈관에 생기는 빈 공간을 막아주는 추가작업 없이 효율적으로 자동 폐 분할을 수행한다.
골 전이 암은 여러 장기에 생긴 암이 질병이 경과함에 따라 뼈로 옮아가는 것으로서, 암 환자에게서 주로 발생하는 합병증 중 하나이다. 골 전이는 골 용해성 전이와 골 형성성 전이로 구분되며, CT에서 골 전이의 진단은 임상적으로 매우 유용할 수 있으나, 많은 판독건수로 인하여 중요한 병변이 간과되는 경우가 많고, 이를 통해 골 전이 암을 조기에 진단하지 못하는 경우가 발생할 수 있다. 이에 본 논문에서는 흉부 CT의 단층 영상들을 3차원 볼륨 데이터로 구성하여 3차원 영상처리 알고리즘을 적용하여 골 전이 병변을 검출하고 3차원 가시화를 수행하였으며, 총 10개 데이터에 대해 민감도를 측정한 결과, 골 형성성 병변이 평균 94.1%, 골 용해성 병변이 평균 90.0%의 값을 나타내어 골 전이 진단에서의 활용에 대한 높은 가능성과 잠재적인 유용성을 확인할 수 있었다.
본 연구는 디지털 흉부 방사선 영상에서 한국인 성인 남성을 대상으로 자세(흉부 후-전과 전-후 촬영)와 연령에 따른 심장 크기 및 심흉비의 정상범위와 자세 및 연령 변화에 따른 상호 호환할 수 있는 변환율을 제시하고자 한다. 2014년 1월부터 12월까지 건강검진센터에서 같은 날에 흉부 후-전 촬영(chest PA)과 흉부 저선량 전산화단층촬영을 실시한 수진자 중 정상으로 판독된 1,300명에서 연구 목적에 적합한 남성 1,024명을 대상으로 하였다. 심장 크기(CS)와 심흉비(CTR) 측정은 Danzer의 방법을 이용하였다. 본 연구 결과, 한국 남성의 Chest PA 및 AP영상에서 CS와 CTR의 정상범위는 Chest PA의 경우 CS 135.48 mm, CTR 43.99%이었으며, Chest AP 영상에서 CS는 155.96 mm, CTR은 51.75%로 나타났다. CS와 CTR의 평균값 차이는 통계적으로 유의하였다(p<0.01). Chest PA와 AP영상에서 심장 좌 우측은 통계적으로 유의한 차이가 없었다(p>0.05). CS의 경우는 Chest PA(p>0.05)와 Chest AP(p<0.05)에서 통계적 유의성의 차이를 보였다. 흉곽크기와 CTR은 Chest PA와 AP 모두에서 연령변화에 따른 통계적으로 유의한 평균값의 차이를 보였다(p<0.01). 본 연구 결과 Chest PA보다 Chest AP영상에서 CS는 약 15%, CTR은 17% 확대되었고, 모든 연령에서 자세변화에 따른 CS와 CTR은 약 10%의 차이를 보였다.
Background: Positron emission tomography(PEFT) using fluorine-18 deoxyglucose(FDG), showing increased FDG uptake and retention in malignant cells, has been proven to be useful in differentiating malignant from benign tissues. We indertook the prospective study to compare the accuracy of the whole-body FDG PET with that of the conventional chest computed tomography(CT) for nodal staging of non-small-cell lung cancers(NSCLC). Material and Method: FDG PET and contrast enhanced CT were performed in 36 patients with potentially resectable NSCLC. Each Imaging study was evaluated independently, and nodal stations were localized according to the AJCC regional lymph nodes mapping system. Extensive lymph node dissection(1101 nodes) of ipsi- and contralateral mediastinal nodal stations was performed at thoracotomy and/or mediastinoscopy. Image findings were compared with the histopathologic staging results and were analyzed with the McNema test(p) and Kappa value(k). Result: The sensitivity, specificity, positive predictive value, and negative predictive value of CT for ipsilateral mediastinal nodal staging were 38%, 68%, 25%, 79%, and 61%, and those of PET were 88%, 71%, 47%, 95%, and 75%(p>0.05, K=0.29). When analyzed by individual nodal group(superior, aortopulmonary window, and inferior), the sensitivity, specificity, positive predictive value, and negative predictive value of CT were 27%, 82%, 22%, 85%, and 73%, and those of PET were 60%, 87%, 92%, and 82%(p<0.05, k=0.27). Conclusion: FDG PET in addition to CT appears to be superior to CT alone for mediastinal staging of non-small cell lung cancers.
폐암은 크기가 다양하고 유사한 밝기값을 갖는 주변 구조물이 존재하기 때문에 흉부 CT 영상에서 폐암을 정확하게 분할하는 것이 어렵다. 이러한 문제를 해결하기 위해 본 논문에서는 심층 감독을 포함하고 UNet3+를 백본으로 사용하는 폐암 분할 네트워크를 제안한다. 또한, 픽셀 기반, 영역 기반 및 형태 기반의 3가지 구성 요소로 이루어진 하이브리드 병변 초점 손실함수를 제안한다. 이를 통해 배경에 비해 작은 영역을 차지하는 폐암 부분에 집중하고, 불명확한 경계를 처리하는데 도움이 되는 형태 정보를 고려할 수 있다. 제안 방법을 UNet 및 UNet3+와 비교 실험을 통해 검증하였고, 제안 방법은 모든 폐암 크기에서 DSC 측면에서 가장 우수한 성능을 보였다.
Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Eun Young Kim;Beomhee Park;Hyun-Jin Bae;Namkug Kim
Korean Journal of Radiology
/
제22권2호
/
pp.281-290
/
2021
Objective: To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD). Materials and Methods: The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease). Results: The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP (p = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5. Conclusion: The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.
Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
Korean Journal of Radiology
/
제22권7호
/
pp.1213-1224
/
2021
Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.
This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).
각종 폐혈관 질환의 발생에 따른 정확하고 빠른 진단의 필요성이 강조되었다. 몇 가지 폐혈관 조영술의 제약사항의 존재로 흉부 CT에 대한 영상 처리의 필요성을 인지하였고 의료 영상처리의 다양성을 위해 ITK를 이용한 폐혈관 분할을 제안하였다. 본 논문은 명암 값을 기반한 방법으로 두 단계의 폐 영역 분할과 혈관 분할의 과정을 수행한다. 각 단계로 폐 영역 분할은 영상 향상, 문턱치 값, 관심영역 잘라내기로 결과 영상을 획득하고 폐 혈관 분할은 획득된 폐 영역에 영역 채우기를 적용하여 얻는다. 분할된 폐혈관 영상을 바탕으로 3차원 시각화 영상을 획득하여 폐혈관에 대한 다양한 관점의 분석 및 진단이 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.