• Title/Summary/Keyword: Cheonggyecheon basin

Search Result 7, Processing Time 0.022 seconds

Application of Stormwater Detention Facilities for Lacking Capacity of Sewers (강우시 도시 하수관거통수능부족 해소를 위한 우수저류시설의 적용)

  • Kim, Young-Ran;Kim, Jin-Young;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • For the last two decades, Seoul has always been affected by large floods. As climate change causes more frequent localized heavy rains exceeding the capacity of sewer or river to discharge water, flood damage is expected to increase. Under the situation, detention facilities for lacking capacity of sewers can control stormwater runoff to reduce flood damage in urbanized areas. In this study, in order to reduce flood damage in Cheonggyecheon areas, the capacity of detention facilities was decided to make up for the lacking capacity of main sewers in case of the rainfall in July, 2001 as large flood. The average amount of stormwater detained in eight Cheonggyecheon drainage areas is $235.09m^3/ha$. Location and size of stormwater detention facilities is designed to have effects in short term by targeting the reduction of flood damage. Schools and parks are suggested as optimal locations where detention facilities are constructed in drainage areas.

Analysis of flood and sediment discharge characteristics on Cheonggyecheon (청계천 홍수량, 유사량 특성 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Kyoung-Jun;Park, Yong-Hee;Lee, Ji-Ho;Park, Hyun-Keun;Kim, Dae-Ha;Park, Sang-Hyoung;Park, Chang-Yeol;Kim, Byoung-Soo;Kim, Hyeon-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1849-1853
    • /
    • 2007
  • In this study, flow-sediment discharge characteristics and relationships are estimated for the Cheonggyecheon basin, newly restored in 2005. Flow and sediment discharge measurement is performed on Ogansugyo, Majanggyo 2 and Yongdugyo during the rainy seasons in 2005-2006. The parameters of Clark UH are estimated using measured data, and sediment rating curves are derived by using grading and concentration analysis. Concentration time and storage coefficient of Clark UH are estimated 0.5 hr and 0.63 hr for Majanggyo 2, and 0.4 hr and 0.45 hr for Yongdugyo, respectively. Grain size of sediments are composed of fine silt to fine sand (0.008-0.25mm) based on the sediment grain size classification (Lane, 1947). Flow-sediment relationships derived by using concentration analysis shows that sediment discharge has no obvious relationship with flow discharge.

  • PDF

The Expansion of Urbanized Area and Geomorphic Environments in Seoul (서울의 시가지 확대와 지형적 배경)

  • Kim, Dong-Sil
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • This study is to review the site of Seoul and its urbanized area expansion in relation with a geomorphic environments. Surveying on the urbanized area of Seoul by period and related geomorphic conditions found the following conclusions. Seoul urbanized area had been expanded from the cheonggyecheon drainage basin to its surrounding hills and marshland. The marshland development began during the Japanese period from around the tributaries of the Hangang river and expanded to the areas by the main stream of the river. The extensive marshland at the point where the main stream and its tributaries of the river join has been developed relatively new. The marshland development, which took advanced engineering skills and a huge investment, is comparatively later and also involves large additional expenses to keep the areas from food damages. Judging from the above findings, this study concluded that the urbanized area expansions in a big metropolitan city such as Seoul, are greatly influenced by geomorphic environments and the importance of geomorphic conditions still hold true even today when scientific and technological developments have reached unprecedented heights.

  • PDF

Runoff analysis according to LID facilities in climate change scenario - focusing on Cheonggyecheon basin (기후변화 시나리오에서의 LID 요소기술 적용에 따른 유출량 분석 - 청계천 유역을 대상으로)

  • Yoon, EuiHyeok;Jang, Chang-Lae;Lee, KyungSu
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.583-595
    • /
    • 2020
  • In this study, using the RCP scenario for Hyoja Drainage subbasin of Cheonggyecheon, we analyzed the change with the Historical and Future rainfall calculated from five GCMs models. As a result of analyzing the average rainfall by each GCMs model, the future rainfall increased by 35.30 to 208.65 mm from the historical rainfall. Future rainfall increased 1.73~16.84% than historical rainfall. In addition, the applicability of LID element technologies such as porous pavement, infiltration trench and green roof was analyzed using the SWMM model. And the applied weight and runoff for each LID element technology are analyzed. As a result of the analysis, although there was a difference for each GCMs model, the runoff increased by 2.58 to 28.78%. However, when single porous pavement and Infiltration trench were applied, Future rainfall decreased by 3.48% and 2.74%, 8.04% and 7.16% in INM-CM4 and MRI-CGCM3 models, respectively. Also, when the two types of LID element technologies were combined, the rainfall decreased by 2.74% and 2.89%, 7.16% and 7.31%, respectively. This is less than or similar to the historical rainfall runoff. As a result of applying the LID elemental technology, it was found that applying a green roof area of about 1/3 of the urban area is the most effective to secure the lag time of runoff. Moreover, when applying the LID method to the old downtown area, it is desirable to consider the priority order in the order of economic cost, maintenance, and cityscape.

A Study on Zoning and Management of Conservation Area and Ecological Management Plan on Urban Stream Using Marxan - A Case of Jungrangcheon(Stream) in Seoul - (Marxan을 이용한 도시하천의 보전지역 설정 및 생태적 관리방안 연구 - 서울시 중랑천을 대상으로 -)

  • Yun, Ho-Geun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.16-27
    • /
    • 2020
  • This study presented a plan for the establishment of conservation areas and the ecological management of those areas in the stream based on the Marxan with Zones Program for a Jungrangcheon Stream in downtown Seoul. The application of the Marxan with Zones Program included the stage of planning unit setting, application of mapping indices, numerical correction for repetitive analysis, creation of scenario-specific optimizations through analysis, analysis of sensitivity by scenario, review, and the selection of optimal plans among the scenarios considered. As a result of the establishment of a conservation area near Jungrangcheon Stream, which has several watershed areas, including an upper-middle-class wildlife protection zone, which was previously designated and managed as a conservation area, and the migratory protection zone downstream of Jungrangcheon Stream were designated as key conservation areas. A number of wild birds were observed in the upper reaches of Jungrangcheon Stream, adjacent to the forests of Suraksan Mountain and Dobongsan Mountain. The downstream area is a habitat for migratory birds that travel along the stream and the adjacent river ecosystem, including the Hangang River confluence and Cheonggyecheon Stream confluence. Therefore, the upper and lower reaches of Jungrangcheon Stream are connected to forest ecosystems such as Dobongsan Mountain, Suraksan Mountain, and Eungbongsan Mountain, as well as urban green area and river ecosystems in the basin area, which influence the establishment of conservation areas. This study verified the establishment and evaluation of existing conservation areas through the Marxan with Zones Program during the verification of the conservation areas and was presented as in-stream management and basin management method to manage the basin areas derived from core conservation areas determined through the program.

Analysis of Urban Runoff Reduction according to SSP Climate Change Scenarios Applying LID Element Technology : focus on the Cheonggyecheon Basin (LID 요소기술을 적용한 SSP 기후변화 시나리오에 따른 도시 유출량 저감 분석_청계천유역을 대상으로)

  • Eui Hyeok Yoon;Bae Sung Lee;Sang Yeon Yoo;Min Ho Lee;Ye Chan Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.386-386
    • /
    • 2023
  • 본 연구는 청계천 유역에 대하여 미래 저영향개발을 고려한 도시 수문순환 변화를 전망하였다. 새로운 기후변화 시나리오에 대하여 유출량 변화 특성 및 저영향개발 요소기술의 적용을 통하여 유출량 감소 변화를 분석하기 위하여 18개의 GCM을 선정하였고, 이를 통하여 생산된 강수량 자료를 활용하였다. 그리고 기후변화 시나리오의 새로운 개념인 SSP 시나리오를 적용하였다. SSP2-4.5 및 SSP5-8.5 시나리오에 대하여 2046년~2075년 기간에 대한 강수량의 변화는 현재 대비 SSP2-4.5 시나리오에서 13.9%와 SSP5-8.5 시나리오에서 20.6%의 증가가 전망되었다. 그리고 미래 기간에 대하여 저영향개발을 고려하여 SWMM을 이용하여 유출량의 저감 변화를 모의하였다. 그 결과 GCM별 또는 저영향개발 요소기술의 조합에 따라 유출량 저감 차이는 있으나 투수성포장 및 침투도랑을 유역 전체에 적용했을 경우 가장 효과가 좋았다. 그 효과는 투수성포장은 SSP2-4.5 시나리오에서는 14.2%, SSP5-8.5 시나리오에서는 13.5%의 유출량 저감 효과를 나타내었고, 침투도랑은 SSP2-4.5에서 14.0%, SSP5-8.5에서 14.2%씩 유출량이 저감되는 것으로 분석되었다. 이 연구는 약 10년 이상 소요되는 도시 수문순환 계획의 이행을 고려하여, 앞으로 20년 후의 기후에 대한 도시 수문순환의 변환을 전망하였다. 그러므로 향후 우리나라 수도 서울의 도시 수문순환 등의 지속가능성 확보에 기여 할 수 있을 것으로 판단된다.

  • PDF