• Title/Summary/Keyword: Chemokine receptor

Search Result 121, Processing Time 0.038 seconds

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.

No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India

  • Sambyal, Vasudha;Manjari, Mridu;Sudan, Meena;Uppal, Manjit Singh;Singh, Neeti Rajan;Singh, Harpreet;Guleria, Kamlesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4291-4295
    • /
    • 2015
  • Background: Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5${\Delta}32$ polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. Materials and Methods: DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5${\Delta}32$ polymorphism by direct polymerase chain reaction (PCR). Results: The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/${\Delta}32$) and homozygous mutant (${\Delta}32/{\Delta}32$) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5${\Delta}32$ polymorphism in esophageal cancer patients and control group. Conclusions: The CCR5${\Delta}32$ polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.

Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells

  • Li, Jingchao;Jeong, Mi-Young;Bae, Ji-Hyun;Shin, Yong-Hwan;Jin, Meihong;Hang, Sung-Min;Lee, Jeong-Chai;Lee, Sung-Joong;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-$\gamma$-inducible protein 10 (IP-10), interferoninducible T-cell $\alpha$ chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.

An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines

  • Seo, Jin-Won;Yang, Eun-Jeong;Kim, Se Hoon;Choi, In-Hong
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.696-701
    • /
    • 2015
  • Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA. It stimulates pro-inflammatory cytokine and interferon production. Here we reported the expression of a novel isoform of TLR3 in human astrocyte cell lines whose message is generated by alternative splicing. The isoform represents the N-terminus of the protein. It lacks many of the leucine-rich repeat domains, the transmembrane domain, and the intracellular Toll/interleukin-1 receptor domain of TLR3. Type I interferons (interferon-α and interferon-β) induced the expression of this isoform. Exogenous overexpression of this isoform inhibited interferon regulatory factor 3, signal transducers and activators of transcription 1, and Inhibitor of kappa B α signaling following stimulation. This isoform of TLR3 also inhibited the production of chemokine interferon-γ-inducible protein 10. Our study clearly demonstrated that the expression of this isoform of TLR3 was a negative regulator of signaling pathways and that it was inducible by type I interferons. We also found that this isoform could modulate inflammation in the brain.

US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

  • Lee, Sungjin;Chung, Yoon Hee;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.

Cooperative Interactions between Toll-Like Receptor 2 and Toll-Like Receptor 4 in Murine Klebsiella pneumoniae Infections

  • Jeon, Hee-Yeon;Park, Jong-Hyung;Park, Jin-Il;Kim, Jun-Young;Seo, Sun-Min;Ham, Seung-Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1529-1538
    • /
    • 2017
  • Klebsiella pneumoniae is an opportunistic and clinically significant emerging pathogen. We investigated the relative roles of Toll-like receptor (TLR) 2 and TLR4 in initiating host defenses against K. pneumoniae. TLR2 knockout (KO), TLR4 KO, TLR2/4 double KO (DKO), and wild-type (WT) mice were inoculated with K. pneumoniae. Mice in each group were sacrificed after either 12 or 24h, and the lungs, liver, and blood were harvested to enumerate bacterial colony-forming units (CFU). Cytokine and chemokine levels were analyzed using enzyme-linked immunosorbent assay and real-time PCR, and pneumonia severity was determined by histopathological analysis. Survival was significantly shortened in TLR4 KO and TLR2/4 DKO mice compared with that of WT mice after infection with $5{\times}10^3CFU$. TLR2 KO mice were more susceptible to infection than WT mice after exposure to a higher infectious dose. Bacterial burdens in the lungs and liver were significantly higher in TLR2/4 DKO mice than in WT mice. Serum $TNF-{\alpha}$, MCP-1, MIP-2, and nitric oxide levels were significantly decreased in TLR2/4 DKO mice relative to those in WT mice, and TLR2/4 DKO mice showed significantly decreased levels of $TNF-{\alpha}$, IL-6, MCP-1, and inducible nitric oxide synthase mRNA in the lung compared with those in WT mice. Collectively, these data indicate that TLR2/4 DKO mice were more susceptible to K. pneumoniae infection than single TLR2 KO and TLR4 KO mice. These results suggest that TLR2 and TLR4 play cooperative roles in lung innate immune responses and bacterial dissemination, resulting in systemic inflammation during K. pneumoniae infection.

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

Development of the Phage Displayed Peptide as an Inhibitor of MCP-1 (Monocyte Chemoattractant Protein-1)-mediated Angiogenesis

  • Jeong, Sun-Joo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.132-134
    • /
    • 2005
  • The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface Plasmon Resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.

  • PDF

Pathway Crosstalk Analysis Based on Protein-protein Network Analysis in Ovarian Cancer

  • Pan, Xiao-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3905-3909
    • /
    • 2012
  • Ovarian cancer is the fifth leading cause of cancer death in women aged 35 to 74 years. Although there are several popular hypothesis of ovarian cancer pathogenesis, the genetic mechanisms are far from being clear. Recently, systems biology approaches such as network-based methods have been successfully applied to elucidate the mechanisms of diseases. In this study, we constructed a crosstalk network among ovarian cancer related pathways by integrating protein-protein interactions and KEGG pathway information. Several significant pathways were identified to crosstalk with each other in ovarian cancer, such as the chemokine, Notch, Wnt and NOD-like receptor signaling pathways. Results from these studies will provide the groundwork for a combination therapy approach targeting multiple pathways which will likely be more effective than targeting one pathway alone.