• 제목/요약/키워드: Chemokine receptor

검색결과 121건 처리시간 0.023초

Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2

  • Jang, Jiyoung;Cho, Eun Hye;Cho, Youngkyung;Ganzorig, Binderya;Kim, Ki Yeon;Kim, Moon Gyo;Kim, Chungho
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.564-574
    • /
    • 2022
  • Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domain-mediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14-dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.

CCR5-mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host Defense to Systemic Candida albicans Infection

  • Nu Z. N. Nguyen;Vuvi G. Tran;Saerom Lee;Minji Kim;Sang W. Kang;Juyang Kim;Hye J. Kim;Jong S. Lee;Hong R. Cho;Byungsuk Kwon
    • IMMUNE NETWORK
    • /
    • 제20권6호
    • /
    • pp.49.1-49.15
    • /
    • 2020
  • C-C chemokine receptor type 5 (CCR5) regulates the trafficking of various immune cells to sites of infection. In this study, we showed that expression of CCR5 and its ligands was rapidly increased in the kidney after systemic Candida albicans infection, and infected CCR5-/- mice exhibited increased mortality and morbidity, indicating that CCR5 contributes to an effective defense mechanism against systemic C. albicans infection. The susceptibility of CCR5-/- mice to C. albicans infection was due to impaired fungal clearance, which in turn resulted in exacerbated renal inflammation and damage. CCR5-mediated recruitment of NK cells to the kidney in response to C. albicans infection was necessary for the anti-microbial activity of neutrophils, the main fungicidal effector cells. Mechanistically, C. albicans induced expression of IL-23 by CD11c+ dendritic cells (DCs). IL-23 in turn augmented the fungicidal activity of neutrophils through GM-CSF production by NK cells. As GM-CSF potentiated production of IL-23 in response to C. albicans, a positive feedback loop formed between NK cells and DCs seemed to function as an amplification point for host defense. Taken together, our results suggest that CCR5-mediated recruitment of NK cells to the site of fungal infection is an important step that underlies innate resistance to systemic C. albicans infection.

자궁경부암 환자에서 방사선치료 시 발현되는 유전자의 규명 (The Differentially Expressed Genes by Radiotherapy in the Patients with Uterine Cervix Cancer)

  • 서은영;조문준;이증훈;이영숙;나명훈;이웅희;김준상;김재성
    • Radiation Oncology Journal
    • /
    • 제19권4호
    • /
    • pp.389-396
    • /
    • 2001
  • 목적 : 임상에서 사용하는 방사선량을 조사하여 환자의 자궁경부암 세포에서 유도되는 유전자를 검색하고자 하였다. 대상 및 방법 : 자궁경부암 환자에서 방사선치료 하루 전(대조군)과 1.8 Gy 조사후 40분 지나서(조사군) 자궁경부암 조직을 생검하여 각 군에서 total RNA를 추출하였다. differential display reverse transcription-polymerase chain reaction기법(DDRT-PCR)으로 발현이 증가 또는 감소된 유전자를 탐색하였다. 발현에 변화가 있는 cDNA를 추출하고 증폭하여 얻은 클론을 reverse Northern Blot방법을 이용하여 screening하였고, Northern Blot으로 확인하였다. sequencing을 실시한 후 NCBI database를 이용하여 blast search를 하였다. 발현이 감소한 유전자를 대상으로 다른 환자에서의 발현 양상을 확인하기 위하여 방사선치료를 받는 5명의 자궁경부암 환자를 대상으로 RT-PCR로 검사 하였다. 결과 : DDRT-PCR기법을 이용하여 방사선 조사군에서 발현이 증가 혹은 감소된 18개의 cDNA band를 발견하였다. reverse northern blot을 이용한 screening에서 발현이 증가된 10개의 클론과 감소된 1개의 클론을 확인하였다. 클로닝된 cDNA 조각들은 대부분 $400\~500\;bp$ 정도 되었으며, 그중 1개의 클론은 잘 알려져 있는 chemokine receptor CXCR4 유전자와 높은 상동성을 보였으며, 4개의 클론은 Human ESTs로 확인되었고 5개의 클론은 기능이 아직 확인되지 않은 알려져 있는 염기서열로 확인되었다. 방사선에 의하여 발현이 감소한 CxCa-11 클론이 모든 환자에서 방사선치료 전 시료에서 발현을 보였으나, 방사선치료 후 시료에서는 그 발현량이 감소하거나 발현이 안되었다. 결론 : DDRT-PCR을 이용하여 임상에서 자주 사용되는 방사선량을 환자의 자궁경부암에 조사했을 때 발현되는 유전자를 확인하였다. 이러한 유전자 발현의 확인은 방사선치료과정 중에 발생하는 일련의 기전들을 이해하는데 도움이 되리라 생각된다.

  • PDF

Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

  • Joo, Yeon Ah;Chung, Hyunjin;Yoon, Sohyun;Park, Jong Il;Lee, Ji Eun;Myung, Cheol Hwan;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.529-535
    • /
    • 2016
  • Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$ and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-$NH_2$-induced PAR2 activation resulting in decreased mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-$NH_2$ and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-${\alpha}$) and IFN-${\gamma}$ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-$NH_2$-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-$NH_2$ downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-$NH_2$ in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

난소낭종 및 자궁내막염 한우에서 염증유래 유전자 발굴 (Identification of Inflammation-related Genes Altered in the Cystic Ovary and Endometritis of Korean Cattle)

  • 최창용;박선영;김은숙;문윤자;박혜진;손동수;조상래;김현종;김재범;박재용;홍성근;한재희;강다원
    • 한국수정란이식학회지
    • /
    • 제23권3호
    • /
    • pp.211-216
    • /
    • 2008
  • This study was carried out to investigate inflammation-related gene expression altered in ovary and endometrium of Korean cattle with reproductive disorders using microarray. In the present study, nine inflammation-related differential1y expressed genes (DEGs) were identified in the cystic ovary and endometrium with endometritis. In the follicular cyst, eotaxin and alpha-2-HS-glycoprotein (AHSG) were up-regulated, whereas complement component 3 (C3) and oxidised low density lipoprotein (lectin-like) receptor 1 (OLR1) were down-regulated. Complement component 4A (C4A) was up-regulated in luteal cyst. In the endometritis, chemokine 1igand l and 2 (CXCL1 and CXCL2), protein C (inactivator of coagulation factors Va and VIIIa), and complement component C5 were up-regulated, whereas kininogen was down-regulated. Of these genes, we focused on eotaxin and kininogen, which were highly regulated in the follicular cyst and endometritis, respectively and on C3 commonly regulated in both reproductive disorders. The microarray data of eotaxin, kininogen, and C3 were validated by semi-quantitative PCR. Consistent with microarray data, eotaxin was up-regulated by 4-fold in the follicular cyst, while kininogen was down-regulated by 5-fold in the endometritis. C3 was down-regulated in the both follicular cyst and endometritis. Our results suggest that these inflammation-related genes could be useful markers for diagnosis of cystic ovary and endometritis of Korean cattle.

In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye;Kim, Gee-Hye;Kim, Jae-Won;Pyeon, Hee Jang;Lee, Jae Cheoun;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.790-796
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.

Insights into the Role of Follicular Helper T Cells in Autoimmunity

  • Park, Hong-Jai;Kim, Do-Hyun;Lim, Sang-Ho;Kim, Won-Ju;Youn, Jeehee;Choi, Youn-Soo;Choi, Je-Min
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.21-29
    • /
    • 2014
  • Follicular helper T ($T_{FH}$) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, na$\ddot{i}$ve T cells are differentiating into $T_{FH}$ cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). $T_{FH}$ cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and $T_{FH}$ cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in $T_{FH}$ cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and $T_{FH}$ cell differentiation. $T_{FH}$ cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of $T_{FH}$ cells. The miR-17-92 cluster induces Bcl-6 and $T_{FH}$ cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T ($T_{FR}$) cells are studied as thymus-derived $CXCR5^+PD-1^+Foxp3^+\;T_{reg}$ cells that play a significant role in limiting the GC response. Regulation of $T_{FH}$ cell differentiation and the GC reaction via miRNA and $T_{FR}$ cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect $T_{FH}$ cell differentiation, and the role of $T_{FH}$ cells in autoimmune diseases.

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF