• Title/Summary/Keyword: Chemkin II

Search Result 14, Processing Time 0.02 seconds

Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method - (SNG/공기 화염의 층류 연소속도 측정 - 분젠과 구형 화염법 비교 -)

  • KIM, DONGCHAN;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.737-746
    • /
    • 2016
  • This article describes a comparison on laminar burning velocity measured by Bunsen and spherical flame methods of synthetic natural gas (SNG) with various composition of hydrogen. In this study, the laminar burning velocity measurements were employed by Bunsen burner and cylindrical constant combustor at which flame images were captured by Schlieren system. These results were also compared with numerical based on CHEMKIN package with GRI 3.0, USC-II and UC Sandiego mechanism. In case of spherical flames, the suitable flame radius range and theoretical models were verified using the well-known previous results in methane/air flames. As an experimental condition, hydrogen content of SNG was adjusted 0% to 11%. Equivalence ratios of Bunsen flames were adjusted from 0.8 to 1.6. On the other hand, those of spherical flames were adjusted from 0.6 to 1.4, relatively. From results of this study, the both laminar burning velocities measured in Bunsen and spherical flame methods were resulted in similar tendency. As the hydrogen content increased, the laminar burning velocity also increased collectively. Laminar burning velocity of measured SNG-air flames was best coincided with GRI 3.0 mechanism by comparison of reaction mechanisms.

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part I: Characteristics of Combustion (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part I: 연소특성)

  • Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The characteristics of flame shape, laminar burning velocity, emissions and heat flux of stagnation point in premixed impinging jet flame of syngas fuel with 10% hydrogen content were experimentally investigated. Also, the adiabatic temperature and burning velocity are calculated by Chemkin package with USC-II mechanism. The equivalence ratios(0.8~5.0) and dimensionless separation distance(2.0~5.0) with fixed Reynolds number(1800) are main parameters in this work. Different flame shapes and colors were observed for different impingement conditions. The experimental results of burning velocity by flame surface area have a consistent with previous works and numerical simulation of this work. The inner flame length could be predicted with the ratio of mixture velocity and burning velocity from a simple formulation by the laminar burning velocity definition. It has been observed that the heat fluxes at stagnation point are directly affected by the flame shape including the separation distance. The emission results in impinging flame of syngas fuel show that the characteristics of $NO_x$ emission traced well with adiabatic temperature trend and CO emission due to fuel rich condition increased continuously with respect to the equivalence ratio.

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.