• Title/Summary/Keyword: Chemical-structural properties

Search Result 965, Processing Time 0.031 seconds

A Research Trend on High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌의 전계 세기의 영향에 관한 연구 동향)

  • Yoon, Hee-Kwang;Kim, Chan-Ho;Her, In-Ho;Lee, Jeong-Soo;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1982-1983
    • /
    • 2007
  • In this work, the $TiO_2$ pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties. Formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The ${\beta}$ parameter could be using to insulator particles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the ${\beta}$ parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF

Prediction of phosphorylation sites using multiple kernel learning (다중 커널 학습을 이용한 단백질의 인산화 부위 예측)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.22-27
    • /
    • 2007
  • Phosphorylation is one of the most important post translational modifications which regulate the activity of proteins. The problem of predicting phosphorylation sites is the first step of understanding various biological processes that initiate the actual function of proteins in each signaling pathway. Although many prediction methods using single or multiple features extracted from protein sequences have been proposed, systematic data integration approach has not been applied in order to improve the accuracy of predicting general phosphorylation sites. In this paper, we propose an optimal way of integrating multiple features in the framework of multiple kernel learning. We optimally combine seven kernels extracted from sequence, physico-chemical properties, pairwise alignment, and structural information. Using the data set of Phospho. ELM, the accuracy evaluated by 5-fold cross-validation reaches 85% for serine, 85% for threonine, and 81% for tyrosine. Our computational experiments show significant improvement in the performance of prediction relative to a single feature, or to the combined feature with equal weights. Moreover, our systematic integration method significantly improves the prediction preformance compared with the previous well-known methods.

  • PDF

Construction of 19F-13C Solid-State NMR Probe for 400MHz Wide-Bore Magnet

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2013
  • Various fluorine-containing materials are used in electronic devices like LCD display panels and Li-ion batteries. The structural conformation of fluorine in fluorinated materials is an important contributing factor that influences the chemical and physical properties. The conformation can be changed by heat and stress during manufacture or use. Understanding the conformational changes is critical for understanding the performance and durability of electronic devices. Solid-state NMR spectroscopy could be widely used for the analysis of various fluorine-containing materials for electronic devices. However, conventional CPMAS probes cannot be used for in-situ analysis of fluorine-containing electronic devices like LCD panels and Li-ion batteries. In this paper, we show the design, construction, and optimization of a $^{19}F-^{13}C$ double-resonance solid-state NMR probe for a 400MHz wide-bore magnet with a flat square coil for in-situ analysis of fluorine-containing electronic devices without observing fluorine background signals. This custom-built probe does not show any fluorine background signals, and can have higher efficiency for lossy samples.

Exploration of structural, thermal and spectroscopic properties of self-activated sulfate Eu2(SO4)3 with isolated SO4 groups

  • Denisenko, Yu.G.;Aleksandrovsky, A.S.;Atuchin, V.V.;Krylov, A.S.;Molokeev, M.S.;Oreshonkov, A.S.;Shestakov, N.P.;Andreev, O.V.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.109-116
    • /
    • 2018
  • $Eu_2(SO_4)_3$ was synthesized by chemical precipitation method and the crystal structure was determined by Rietveld analysis. The compound crystallizes in monoclinic space group C2/c. In the air environment, $Eu_2(SO_4)_3$ is stable up to $670^{\circ}C$. The sample of $Eu_2(SO_4)_3$ was examined by Raman, Fourier-transform infrared absorption and luminescence spectroscopy methods. The low site symmetry of $SO_4$ tetrahedra results in the appearance of the IR inactive ${\nu}_1$ mode around $1000cm^{-1}$ and ${\nu}_2$ modes below $500cm^{-1}$. The band intensities redistribution in the luminescent spectra of $Eu^{3+}$ ions is analyzed in terms of the peculiarities of its local environment.

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique (2파장 펌프-프로브 기법을 이용한 질화규소 박막의 열물성 평가)

  • Kim, Yun Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.547-552
    • /
    • 2019
  • In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

Adsorption of microcystin onto activated carbon: A review

  • Ampiaw, Rita E.;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.405-415
    • /
    • 2019
  • Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as it is highly toxic. Among the several techniques employed for the removal of this toxin, adsorption with AC has been extensively studied. AC has gained wide attention as an effective adsorbent of m-LR due to its ubiquity, high sorption capacity, cost effectiveness and renewability. In this review, the adsorption of m-LR onto AC was evaluated using the information available in existing scientific literature. The effects of the pore volume and surface chemistry of AC on the adsorption of m-LR considering the structural and chemical properties of ACs were also discussed. Furthermore, we identified the parameters that influence adsorption, including natural organic matter (NOM), pH, and ionic strength during the m-LR adsorption process. The effect of these parameters on MCs adsorption onto AC from previous studied is compiled and highlighted. This review may provide new insights into future activated carbon-m-LR adsorption research, and broaden its application prospects.

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.

Effects of Substrate Temperature on Properties of Sb-doped SnO2 Thin Film

  • Do Kyung, Lee;Young-Soo, Sohn
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.371-375
    • /
    • 2022
  • Antimony-doped tin oxide (ATO) thin films, one type of transparent conductive oxide (TCO) films, were prepared on a SiO2-coated glass substrate with different substrate temperatures by a radio-frequency magnetron sputtering system. Structural, optical, and electrical characteristics of the deposited ATO films were analyzed using X-ray diffraction, scanning electron microscopy, alpha-step, ultraviolet-visible spectrometer, and Hall effect measurement. The substrate temperature during deposition did not affect the basic crystal structure of the films but changed the grain size and film thickness. The optical transmittance of the ATO films deposited at different substrate temperatures was over 70%. The lowest sheet resistance and resistivity were 8.43 × 102 Ω/sq, and 0.3991 × 10-2 Ω·cm, respectively, and the highest carrier concentration and mobility were 2.36 × 1021 cm-3 and 6.627 × 10-2 cm2V-1s-1, respectively, at a substrate temperature of 400 ℃.