• Title/Summary/Keyword: Chemical-structural properties

Search Result 974, Processing Time 0.025 seconds

Optical Properties of Poly(N-arylcarbazole-alt-aniline) Copolymers For Polymer Light Emitting Devices

  • Wang, Hui;Ryu, Jeong-Tak;Kim, Yeon-Bo;Kwon, Young-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.55-60
    • /
    • 2006
  • Thermally stable and solution-processable poly(N-arylcarbazole-alt-aniline) copolymers with high structural integrity were synthesized in good yields via palladium-catalyzed polycondensation of aniline with corresponding N-arylcarbazole monomers such as N-(2-ethylhexyloxyphenyl)-3,6-dibromocarbazole,bis[6-bromo-N-(2-ethylhexyloxyphenyl)carbazole-3-yl] and N-(4-(2-ethylhexyl)-3,5-dibromomethylene-phenyl) carbazole, respectively. The optical and electrochemical properties of these copolymers were measured and compared with those of poly(N-alkylcarbazole-alt-aniline) copolymer. All synthesized poly(N-arylcarbazole-alt-aniline) copolymers showed maximum UV-Vis absorption peaks at around 300 nm in THF solution, and exhibited maximum photoluminescence peaks in the blue emission range from 430 to 460 nm. It was also found that poly(N-arylcarbazole-alt-aniline) copolymers had wider band gap energy than poly(N-alkylcarbazole-alt-aniline) copolymer.

  • PDF

Effect of Copper Substitution on Structural and Magnetic Properties of NiZn Ferrite Nanopowders

  • Niyaifar, Mohammad;Shalilian, Hoda;Hasanpour, Ahmad;Mohammadpour, Hory
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.391-394
    • /
    • 2013
  • In this study, nickel-zinc ferrite nanoparticles, with the chemical formula of $Ni_{0.3}Zn_{0.7-x}Cu_xFe_2O_4$ (where x = 0.1- 0.6 by step 0.1), were fabricated by the sol-gel method. The effect of copper substitution on the phase formation and crystal structure of the sample was investigated by X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD result shows that due to the reduction of Zn content,the crystallite size of the sample increased. The results of the vibration sample magnetometer (VSM) exhibit an increase in saturation magnetization value (Ms) for samples with x ${\leq}$ 0.3 and a linear decrease for samples with x > 0.3. The variation of saturation magnetization and coercivity of the samples were then studied.

3D porous ceramic scaffolds prepared by the combination of bone cement reaction and rapid prototyping system

  • Yun, Hui-Suk;Park, Ui-Gyun;Im, Ji-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • Clinically-favored materials for bone regeneration are mainly based on bioceramics due to their chemical similarity to the mineral phase of bone. A successful scaffold in bone regeneration should have a 3D interconnected pore structure with the proper biodegradability, biocompatibility, bioactivity, and mechanical property. The pore architecture and mechanical properties mainly dependent on the fabrication process. Bioceramics scaffolds are fabricated by polymer sponge method, freeze drying, and melt molding process in general. However, these typical processes have some shortcomings in both the structure and interconnectivity of pores and in controlling the mechanical stability. To overcome this limitation, the rapid prototyping (RP) technique have newly proposed. Researchers have suggested RP system in fabricating bioceramics scaffolds for bone tissue regeneration using selective laser sintering, powder printing with an organic binder to form green bodies prior to sintering. Meanwhile, sintering process in high temperature leads to bad cost performance, unexpected crystallization, unstable mechanical property, and low bio-functional performance. The development of RP process without high thermal treatment is especially important to enhance biofunctional performance of scaffold. The purpose of this study is development of new process to fabricate ceramic scaffold at room temperature. The structural properties of the scaffolds were analyzed by XRD, FE-SEM and TEM studies. The biological performance of the scaffolds was also evaluated by monitoring the cellular activity.

  • PDF

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

A study on the Electrical Characteristics of $\alpha$-Sexithiophene Thin Film ($\alpha$-Sexithienyl 박막의 전기적 특성에 관한 연구)

  • 오세운;권오관;최종선;김영관;신동명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.518-520
    • /
    • 1997
  • Recently, thiophene oligomer with short chain lengths has received much attention as model compounds for facilitating better understanding of electronic and optical properties of polymers, because oligomer is well-defined chemical systems and its conjugation chain length can be exactly controlled. Moreover, organic this films based on conjugated thiophene oligomer have potential for application to electronic and optoelectronic devices such as MISFETs(metal-insulator-semiconductor field-effect transistors) and LEDs(light-emitting diodes). However, there is little knowledge on electronic and structural properties of linear-conjugated oligothiophenes in solid states, compared with those in solutions. $\alpha$-sexithienyl($\alpha$-6T) thin-films were deposited by OMBD(Organic Molecular Beam Deposition) technique, where the $\alpha$-6T was synthesized and purified by the sublimation method. The $\alpha$-6T films were deposited under various conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The $\alpha$-6T films deposited at an elevated substrate temperature showed higher conductivity than the film deposited at room temperature. Electrical characterization of these films will be also executed by using four-point probe measurement technique.

  • PDF

Fluorine-Doping Effect on Structural and Optical Properties of ZnO Nanorods Synthesized by Hydrothermal Method

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jong Su;Lee, Sang-Heon;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.1-204.1
    • /
    • 2013
  • Fluorine, the radius of which is close to that of oxygen, could be an appropriate anion doping candidate. A lower lattice distortion could be expected for F doping, compared with Al, Ga, and In doping. F-doped ZnO (FZO) and undoped ZnO nanorods were grown onto glass substrate by the hydrothemal method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0.0 to 10.0 in 2.0 steps. To investigate the effects of the structure and optical properties of FZO nanorods were investigated using X-ray diffraction, UV-visible spectroscopy and photoluminescence (PL). For the PL spectra, the maximum peak position of NBE moves to higher energy, from 0 to 4 at.%. As the doping concentration increases, the maximum peak position of NBE gradually moves to lover energy, from 4 to 10 at.%.

  • PDF

A Trend of R&D in Enviromental Thermoplastic Elastomer (환경친화형 열가소성 탄성체 기술개발 동향)

  • Lee, Yong-Sang;Jeong, Jung-Chea;Park, Jong-Man
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.245-249
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied research. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

Structural, morphological, optical, and photosensing properties of Cs2TeI6 thin film synthesized by two-step dry process

  • Hoat, Phung Dinh;Van Khoe, Vo;Bae, Sung-Hoon;Lim, Hyo-Jun;Hung, Pham Tien;Heo, Young-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.279-285
    • /
    • 2021
  • Recently, cesium tellurium iodine (Cs2TeI6) has emerged as an inorganic halide perovskite material with potential application in optoelectronic devices due to its high absorption coefficient, suitable bandgap and because it consists of nontoxic and earth-abundant elements. However, studies on its fabrication process as well as photoresponse characteristics are limited. In this study, a simple and effective method is introduced for the synthesis of Cs2TeI6 thin films by a two-step dry process. A Cs2TeI6-based lateral photosensor was fabricated, and its photoresponse characteristics were explored under laser illuminations of four different wavelengths in the visible range: 405, 450, 520, and 655 nm. The initial photosensing results suggest potential application and can lead to more promising studies of Cs2TeI6 film in optoelectronics.

A Study of Nitric Oxide Oxidation Catalyst Using Non-noble Metals (비귀금속계 금속을 이용한 일산화질소 산화 촉매 연구)

  • Shin, JungHun;Hong, SungChang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.385-392
    • /
    • 2021
  • In this study, impact of Co proportion and calcination temperature of ceria on the Co/CeO2 was analyzed by comparing nitrogen monoxide oxidation performance of various catalysts and their physico-chemical properties. The structural properties of each catalyst were studied by XRD and BET analysis, and the surface crystal states of cobalt were proposed according to the surface density. Oxidation states of elements were observed through Raman and XPS analysis, and the relationship between typical oxidation states and nitrogen monoxide oxidation performance was designed. Through H2-TPR, oxygen-transferring capacity due to changes in the characteristics of catalysts were identified, and activation sites (Co3+) for oxidation were suggested.

Effects of Fluorine Addition on Thermal Properties and Plasma Resistance of MgO-Al2O3-SiO2 Glass (MgO-Al2O3-SiO2계 유리 열물성 및 내플라즈마 특성에 대한 Fluorine 첨가의 영향)

  • Yoon, Ji Sob;Choi, Jae Ho;Jung, YoonSung;Min, Kyung Won;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2022
  • MAS-based glass, which has been studied to replace the ceramic material used in the plasma etching chamber, has problems such as forming and processing due to its high melting temperature. To solve this problem, in this study, fluoride was added to the existing MAS-based glass to increase the workability in the glass manufacturing and to improve the chemical resistance to CF4/Ar/O2 plasma gas. Through RAMAN analysis, the structural change of the glass according to the addition of fluoride was observed. In addition, it was confirmed that high-temperature viscosity and thermal properties decreased as the fluoride content increased and plasma resistance was maintained, it showed an excellent etching rate of up to 11 times compared to quartz glass.