• Title/Summary/Keyword: Chemical-structural properties

Search Result 974, Processing Time 0.026 seconds

Differences of Structural and Electronic Properties in $Ba_{1-x}K_xBiO_3$ (x=0, 0.04, and 0.4)

  • 정동운;최은국
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1045-1048
    • /
    • 1999
  • Electronic structures calculated based upon the extended Huckel tight-binding method for Ba1-xKxBiO3 with x = 0, 0.04, and 0.4 are reported. It is noticed that the commensurate ordering of Bi 3+ and Bi 5+ is responsible for the insulating and semiconducting behavior in BaBiO3 and Ba0.96K0.04BiO4. The band gaps of 3.2 eV and 1.4 eV for the former and the latter compounds, respectively, are consistent with the experimental results. Doping in Bi 6s-block band up to x = 0.4 causes the collapse of the ordering of Bi 3+ and Bi 5+, thereby resulting in the superconductivity in the Ba0.6K0.4BiO3 compound. Strikingly, the character of oxygen contributes to the conducting mechanism than that of the bismuth. This is quite different from the cuprate superconductors in which the character of copper dominates that of oxygen.

Trimeric Chromium Oxyformate Route to Chromia-Pillared Clay

  • Yun, Ju Byeong;Hwang, Seong Ho;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1049-1051
    • /
    • 2000
  • A chromia-pillared clay has been prepared by ion exchange type intercalation reaction between the sodium ion in montmorillonite and the trimeric chromium oxyformate (TCF) ion, and by subsequent heat-treatment. The structural and thermal properties have been systematically studied by thermal analysis, powder XRD, IR spec-troscopy, and XAS. The gallery height of~6.8 $\AA$ upon intercalation of the TCF ion suggests that the $Cr_3O$ plane is parallel to the aluminosilicate layers. Even though the basal spacing of TCF intercalated clay decreases slightly upon heating, the layer structure was retained up to $550^{\circ}C$ as confirmed by XRD and TG/DTA. Ac-cording to the EXAFS spectroscopic analysis, it is identified that the (Cr-Cr) distance of 3.28 $\AA$ between vertex-linked CrO6 octahedra in TCF splits into 2.64 $\AA$, 2.98 $\AA$, and 3.77 $\AA$ due to the face-, edge-, and corner-shared CrO6 octahedra after heating at $400^{\circ}C$, implying that a nano-sized chromium oxide phase was stabilized within the interlayer space of clay.

Large Unilamellar Phospholipid Vesicles as a Model Substrate for Phospholipase D

  • Kim Chanwoo;Koh Eun-Hie;Choi Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.381-384
    • /
    • 1992
  • The hydrolytic susceptibility of large unilamellar vesicle (LUV) toward cabbage phospholipase D (PLD) was studied. The activity of PLD was determined by pH stat titration method. Using phosphatidylcholine LUV as substrate a pH optimum of 6.96 was observed. For maximal activity the optimal temperature of $31^{\circ}C$ and 10 mM of Ca2+ were required. The apparent Km value estimated was 2.5 mM. The hydrolytic activity of PLD toward PC LUV was somewhat high despite the absence of activator in assay system and this high susceptibility of PC LUV may be attributed to the structural properties of LUV. The effect of amphiphatic substances such as dicetyl phosphate and phosphatidic acid on the enzyme activity were also examined in mixed LUVs.

NMR Study of Effects of $MgCl_2$ on the Structural and Dynamical Properties of Yeast Phenylalanyl tRNA

  • Se Won Suh;Byong Seok Choi;Ki Hang Choi;Jin Young Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.517-520
    • /
    • 1992
  • Solvent exchange rates of selected protons were measured by NMR saturation recovery method for yeast $tRNA^{Phe}$, at temperature from 25 to $40^{\circ}C$, in the presence of 0.1 M NaCl and various low levels of added magnesium ion. The exchange rates in zero $Mg^{2+}$ concentration indicate early melting of acceptor stem, D stem, and tertiary structure. Addition of magnesium ion stabilizes the entire D stem more effectively than any other secondary or tertiary interactions.

Synthesis of Water-Soluble Aminoaryloxy-Methylamino Cosubstituted Polyphosphazenes as Carrier Species for Biologically Active Agents

  • Gwon, Seok Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1243-1247
    • /
    • 2001
  • The water-soluble poly(aminoaryloxy-methylamino phosphazene) has been synthesized and investigated as a polymeric carrier species for the covalent attachment of biologically active agents. The cyclic trimeric model systems were utilized for the synthesis of polymeric analogues containing bioactive side groups. The sodium salt of 4-acetamidophenol was first allowed to react with (NPCl2)3 or (NPCl2)n and was then treated with excess methylamine to yield derivatives of type [NP(NHCH3)x(OArNHCOCH3)y]3 or [NP(NHCH3)x(OArNHCOCH3)y]n. The 4-acetamido groups were then hydrolyzed to 4-aminophenoxy units with potassium tert-butoxide. Coupling reactions between amino group and N-acetylglycine was accomplished with the use of dicyclohexylcarbodiimide. Their properties and structural characterization are discussed.

X-ray Structure and Electrochemical Properties of Ferrocene-Substituted Metalloporphyrins

  • Kim, Jin Won;Lee, Seok U;Na, Yong Hwan;Lee, Gi Pyeong;Do, Yeong Gyu;Jeong, Se Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1316-1322
    • /
    • 2001
  • Transition metal complexes of novel mono- and di-ferrocene-substituted porphyrins have been synthesized and characterized by structural and electrochemical methods. The X-ray structures of Mn(FPTTP)Cl and Mn(DFTTP)Cl showed the distorted square pyramidal coordination geometry with syn configuration of chloride and ferrocenyl substituents. The electrochemistry of ferrocene-substituted porphyrins and their metal complexes has been determined to elucidate the ${\pi}-conjugation$ effect of the porphyrin ring. The ferrocenyl group of H2FPTTP underwent a reversible one-electron transfer process at 0.30 V, indicating the good electron donating effect of the phorphyrin ring to the ferrocene substituent. The redox potential of the ferrocenyl subunit and porphyrin ring was affected by the central metal ions of the metalloporphyrins, that is, Zn(II) and Ni(II) made the oxidation of ferrocene much easier and Mn(III) made it harder. The ferrocene subunits of H2DFTTP interacted electrochemically with each other with peak splitting of 0.21 V. The strength of the electrochemical interactions between the two ferrocenyl substituents can be controlled by central metal ions of metalloporphyrins.

A Statistical Termodynamic Study of Phase Equilibria in Microemulsions

  • Kyung-Sup Yoo;Hyungsuk Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.334-342
    • /
    • 1991
  • To investigate the phase equilibria and structural properties of microemulsions, we study a simple phenomenological model on the basis of the cubic lattice cell with which the oil- and water-filled cells are connected one another, respectively. The surfactant is assumed to be insoluble in both oil and water, and to be adsorbed at the oil-water interface. The Schulman condition, according to which the lateral pressure of the surfactant layer is compensated by the oil-water interfacial tension, is found to hold to good approximation in the middle-phase microemulsion. Our results show that the oil- and water-filled domains in that microemulsion are about 50-150 $\AA$ across, and depend sensitively on the curvature parameters. The phase diagram is not symmetric in this model. It may be asymmetrized intrinsically by non-equivalency of oil and water. The two- and tree-phase equilibria including critical points and critical endpoints are found.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Formation and Chemical Leaching of a Non-Equilibrium Al(Fe-Cu) Alloy Powder produced by Rod-Milling (Rod Milling에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 형성 및 Chemical Leaching)

  • 김현구;명화남
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • We report the structure, thermal and magnetic properties of a non-equilibrium $Al_{0.6}(Fe_{50}Cu_{50})_{0.4}$ alloy powder produced by rod milling and chemical leaching. An X-ray diffractometry(XRD), a transmission electron microscope(TEM), a differential scanning calorimeter(DSC), a vibrating sample magnetometer(VSM), and superconducting quantum interference device(SQUID) were utilized to characterize the as-milled and leaching specimens. The crystallite size reached a value of about 8.82 nm. In the DSC experiment, the peak temperatures and crystallization temperatures decreased with increasing milling time. The activation energy of crystallization is 200.5 kJ/mole for as-milled alloy powder. The intensities of the XRD peaks of as-milled powders associated with the bcc type $Al_{0.5}Fe_{0.5}$ structure formative at $350^{\circ}C$ sharply increase with increasing annealing temperature. Above $400^{\circ}C$, peaks alloted to $Al_{0.5}Fe_{0.5}$ and $Al_{5}Fe_{2}$ are observed. After annealing at $600^{\circ}C$ for 1h, the leached Ll specimen transformed into bcc $\alpha$-Fe and fcc Cu phases, accompanied by a change in the structural and magnetic properties. The saturation magnetization decreased with increasing milling time, and a value of about 8.42 emu/g was reached at 500 h of milling. The coercivity reached a maximum value of about 142.7 Oe after 500 h of milling. The magnetization of leached specimens as function of fields were higher at 5 K, and increased more sharply at 5 K than at 100 K.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.