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and 31P-NMR patterns are as expected.

The reaction of BPPFA with Fe(CO)5 or Fe3(CO)i2 afforded 

two major products 2 and 3, while the reaction with Fe2(CO)9 

gave 3 alone. The purple unidentified compound that was 

formed in a trace amount from the reaction with Fe3(CO)i2 

(see Experimental) may be considered as a trinuclear iron 

complex of BPPFA analogous to (卩，T]2-BPPF)Fe3(CO)io judg­

ing from the same color.12 The spectral data provided in 

Tables 1 and 2 are all in a good agreement with the formula­

tion of each compound. An interesting aspect to be noted 

concerning the coordination behavior of BPPFA is that in 

2 this ligand acts as a monodentate through a single phos­

phorus like that shown in(T)1-BPPF)Fe(CO)4, while in 3 it 

acts as a bridge employing both phosphorus atoms as seen 

in (卩，Ti2-BPPF)Fe2(CO)8. This is evidenced by the presence 

of two 31P signals and of the singlet for the free -NMe2 group 

in each compound. Even more supportive is the 13C-NMR 

pattern for the carbonyl groups as shown in Figure 1. Table 

2 shows a doublet for the -Fe(CO)4 moiety in 2 and a pair 

of doublets for the two non-equivalent -Fe(CO)4 groups in 

3, Finally, an important question concerning the point of at­

tachment of BPPFA in 2 can be answered by comparing 

both the 31P and 13C-NMR patterns of the three compounds 

1-3. Thus, for example, as shown in Figure 1., the chemical 

shift of the doublet at 6=212.8 ppm in 2 is closer to that 

of the one at 8=212.9 ppm which is arising from the -Fe(CO)4 

moiety attached to the -PPh2 group in the singly substituted 

cyclopentadienyl ring in 3.
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A Statistical Termodynamic Study of Phase Equilibria 
in Microemulsions
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To investigate the phase equilibria and structural properties of microemulsions, we study a simple phenomenological 

model on the basis of the cubic lattice cell with which the oil- and water-filled cells are connected one another, 

respectively. The surfactant is assumed to be insoluble in both oil and water, and to be adsorbed at the oil-water 

interface. The Schulman condition, according to which the lateral pressure of the surfactant layer is compensated 

by the oil-water interfacial tension, is found to hold to good approximation in the middle-phase microemulsion. Our 
results show that the oil- and water-filled domains in that microemulsion are about 50-150 A across, and depend 

sensitively on the curvature parameters. The phase diagram is not symmetric in this model. It may be asymmetrized 

intrinsically by non-equivalency of oil and water. The two- and tree-phase equilibria including critical points and 

critical endpoints are found.

Introduction can be stabilized by addition of suitable surfactants, which

optimize their interactions by standing at the oil-water inter­

Mixtures of oil and water are naturally unstable, but they face and decrease drastically the interfacial energy. With
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small but finite interfacial tensions, oil-in-water and water- 

in-oil emulsions have rather large droplets (0.5-10 卩m), and 

thermodynamically unstable? However, some surfactants (or 

some surfactant mixtures: surfactant + cosurfactant) have a 

different behavior; unlike unstable macroemulsion systems, 

it is possible to reach a state of zero interfacial tension. A 

system of this sort tends to increase the total area of inter­

face between oil and water. It is called a microemulsion, 

which was first described by Schulman.2

Microemulsions are thermodynamically stable oil-water- 

surfactant mixtures, sometimes containing salt and cosurfac­

tant3 6 as well. These systems have been extensively studied 

in recent years with relation to their practical applicabilities 

including tertiary recovery of oil deposits,7 a possible low- 

emission fuel,8 and a possible blood substitute.9 Their struc­

tures have been studied with the help of various techniques 

such as small angle X-ray light scattering,10 electron micro­

scopy,11 neutron scattering.12 From a physicochemical view­

point, microemulsions are of interest because they involve 

complex phase equilibria and critical phenomena. Three- 

phase equilibria13-15 (a middle-phase microemulsion coexists 

with almost pure oil and water) and tricritical points16-18 

are examples.

Many theoretical studies are also processed and various 

models are proposed. There have so far been two different 

approaches to the construction of thermodynamic models for 

microemulsions. In this paper we f이low the phenomenologi­

cal approach13,1419 which was first initiated by Talmon and 

Prager,19 and later further processed by de Gennes and co­

workers,20,21 Widom,13 and Safran and coworkers.14

In most of previous papers131419 the free energy of mixing 

of oil and water is estimated by using the random-mixing 

approximation. But they did not consider the difference by 

non-equivalency of oil and water. Such models usually give 

a symmetrical phase diagram if the spontaneous curvature 

is not introduced. In this paper we use the random-filled 

approximation incorporating the molecular properties of oill, 

water and surfactant directly and indirectly, and so consi­

dering non-equivalency of oil and water. This shows the in­

trinsic asymmetry of phase diagram.

Theory

Model. Formally, the real system of microemulsions may 

be thought to have five independent chemical components 

(oil, water, surfactant, salt and cosurfactant), and so, at fixed 

temperature and pressure, one must consider four relevant 

thermodynamic variables. In this paper we consider micro­

emulsions of ternary mixtures composed of oil, water and 

surfactant, likewise the model of Ref. (13). Our model, at 

fixed temperature and pressure, has thermodynamic va­

riables of two chemical compositions <阮 and(阮(volume frac­

tions of oil and water), surfactant number density p (actually, 

some combination of the densities of surfactant and cosurfac­

tant), and a geometrical lattice cell size variable g. The main 

role of the cosurfactant is to reduce the rigidity of the inter­

facial layer by making it flexible, and then to decrease the 

rigidity constant K and to modify the spontaneous radius

In a real system of some surfactant one must see that 

the addition of salt is to give the change of spontaneous 

radius, and so, the water component is to be thought of as 

modeling brine.

With the above-mentioned assumptions, space is divided 

into cubes of an edge length £ filled randomly either with 

water (probability 0^) or with oil (probability <|)o). The sum 

of the volume fractions of oil and water is

S+(阮=1 ⑴

When two adjacent cells are filled differently, they are separ­

ated by an interface of area 孕.Therefore, the interfacial 

area per cell is

A=z^(j>o<t>w (2)

where z (=6) is a coordination number of the cubic lattice. 

The number of surfactant molecules per cell is given by

ns=N윦/N=Ns 混V=^ (3)

where Ns, N and V and total number of surfactant molecules, 

the total number of cells and the total volume of the system, 

respectively. From Eqs. (2)-(3), the interfacial area per sur­

factant molecule is obtained as

Z=A/ns=어)o (阮催 ⑷

Derivation of Free Energy. At first, we define the ca­

nonical partition function of the system and describe the 

total free energy, and later, we derive the detailed energy 

terms of the free energy. We assume that the oil- and water- 

filled cells are under the averaged environments, respecti- 

v 이 y.

The canonical partition function Q of the system is written 

as

Q=Qw/o Qo/iyexp( -W/kT) (5)

where Qw/o and Qo/w are the partition function of the water- 

filled- W/O type cells (hereafter, we call them W/O cells) 

and the oil-filled- O/W type cells (hereafter, we call them 

O/W cells), respectively. The total average interaction poten­

tial energy W is

WF+用+R+/% +Fc (6)

where Fw and Fo are the free energies of water- and oil- 

filled cells in the bulk phases, respectively. E, Fs and Fc 

are the energy of interaction of adjacent water- and oil-filled 

cells, the interaction energy by surfactant molecules which 

are constrained to stay at the oil-water interface, and the 

additional energy that arises from the deviation of the aver­

age curvature of the interfacial layer from some favored va­

lue, respectively.

The partition functions of W/O and O/W cells can be writ­

ten as

Qw/o~Qy^ exp(~E^/kT)/Nw/o ! »

Qg=^exp(—E談 ! (7)

where qw/o and qo/w are the numbers of states of W/O and 

O/W cells, respectively. Ew and Eo are the average potential 

energies of W/O and O/W cells, respectively. NW/o and No/w 

are the numbers of W/O and O/W cells, respectively. The 

formation of the W/O cell is related to the probability of 

having a band which favors concave toward water, and that 

of the O/W cells is related to the probability of having a 

band which favors convex toward water. Therefore, the num­
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bers of W/0 and 0/W cells are assumed to be

TV昭o 스dVe即 Oo?, 7Vo/w—Mj)o <J>(y2 (8)

In consideration of mean-field approximation, the numbers 

of states of the W/0 and 0/W cells are written as

qw/o—A^TVo Avo, a°/w= A쳐矿 1\7版是即 (9)

where A.w/o and Ag are the thermal de Broglie wave leng- 

比s of the W/0 and 0/W cell, respectively, and they are 

written as

也 T严 (10)

where h, m,, k and T are the Planck constant, the mass 

of j-species, the Boltzmann constant, and the absolute tem­

perature (we use T = 300 K in our calculations), respectively. 

In Eq. (9), No and Nw are the total numbers of oil and water 

molecules in the system, respectively, and they are written 

as

No=N肾 ^o/vo, Nw=N寻(\>w/vw (11)

where v0 and vw are the volumes per molecule of oil and 

water, respectively. In Eq. (9), At。and ^vw are the free 

volumes per molecule of oil and water, respectively. We use 
the physically reasonable values 如=325.5 A, △&=3 A3,22 

mo =170.4 g/mole (for decane), vw~29.9 A3, \vw=2 A3,22 

and 彻“=180 g/mole in our numerical calculations.

The thermodynamic equation for the Helmholtz free en­

ergy is

F= -kT InQ (12)

From Eqs. (5)-( 12), the total free energy of the system is 

rewritten as

-kTN^w^o ln(A而糖3△吻必丿。顿饥)+E世

—kTN^o^w ln(A쳐頌 协0)(阮)+Eo

+F务+龙+F+Fs(13)

The total free energy F can be given as the sum of five 

terms as follows:

F=Fp+Fe+Fi+Fs+Fc (14)

(a) The first term is the sum of free energy of pure water 

Fw and pure oil Fo, that is

Fp = +F^) + (Eo+Fo) —Fw+Fo (15)

If fw and fo are the free energy densities of pure water and 

oil, respectively, then the free energy density of Fp becom­

es

Pp. V = Vw^w^fo <l>o) (16)

This term has the same value in the system of separated 

oil and water phases, and in that of the microemulsions at 

given compositions, so it does not effect to the phase beha­

viors.

(b) The next contribution, Fe is the free energy of mixing 

entropy for a set of oil-filled cells which is mixed with a 

set of water-filled cells. In Eqs. (10) and (13), the thermal 

de Broglie wave length terms can be rewritten as

A譌 = (2갸〃初昭0/饥沪2 = (2了比7初初湖*)3/2 =，侦3 济)3/2,

A쳐V — (2가?7初(用/铲严=(2nkTmonc/h2)3/2=A53(?3/r0)3/2,

(17)

where nw (=：/z切)and no (=：/〃。) are the numbers of 

oil and water molecules per cell, respectively. By using the 

relation of Eq. (17) and V=N研 the free energy dens辻y of 

Fe becomes

Fe vn--(kT/^)(\>w^o 1이言、铲人기0。省/5)辺/(阮饥］
, r (18) 

一(紅符)(阮(院InLW Azw饥所严/(阮顿］

By this term, we can gain the intrinsic asymmetry of the 

phase diagrame.

(c) The third contribution, E is the energy of interaction 

of adjacent oil- and water-filled cells. If y。is the interaction 

energy per unit area of contact, then F, is written as

F\=NAl (19)

We use a reasonable value 丫。= 50 dyn/cm in our calcula­

tions. From the elation of V=N^ and Eq. (2), the free en­

ergy density of F, becomes

■E" = 6Yo(M)成 (20)

(d) The fourth term, Fs is interaction energy by the surfa­

ctant molecules which are constrained to stay at the oil-water 

interface. This term is proportional to the total number of 

surfactants. If 丿?(£) is the free enegry per surfactant mole­

cule, then Fs can be written as

Fs=Nsfs(£) (21)

If the surfactant in the interfacial layer behaves like a 

two dimensional ideal gas (in real systems, this problem is 

complicated by the possible presence of long range electros­

tatic interactions, repulsive interactions and interactions be­

tween surfactant and oil, and water, respectively), then from 

the surfactant interactions by an ideal gas type contribution13 

and the mean-field-like surfactant repulsions,23,24 /s(£) can 

be expressed as

/s(2)=—，K、lnZ + Z，°/Z+g (22)

where Eo is the optimal surface area per surfactant molecule 

and g is the bulk free energy per surfactant molecule. We 

simply treat g as a function of temperature alone. In the 

saturated state X is close to to good approximation, then 

Eq. (22) is rewritten as

£「= exPt(SoYo +g)/权］ (23)

From Eqs. (4), (21), (23) and the relation of p=Ns/V, the 

free energy density of Fs becomes

Fs," TeTp In (6侦0。/&)27、) (24)

where Et is a function dependent only on temperature. For 
convenience, we use 爲=3.0 A2 at T=300 K in our numeri­

cal calculations.

(e) The final term, Fc is the curvature free energy. This 

is the additional free energy that arises from any deviation 

of the average curvature of surfactant layer from the some 

favored value that reflects the geometry of the surfactant 

molecule and its interaction with the oil and water at two 
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surfaces of the layer. This curvature term is small, but can­

not be omitted in the microemulsion systems where the in- 

teracial tension is very small, and it controls a detaile shape 

of the phase diagram. The curvature energy for the fluid 

interface has been described by Helfrich.25 The curvature 

energy Ec is

Ec=K(q+°2 —2//°)2/2 (25)

where rigidity constant K represents the rigidity of the inter­

face that determines the magnitude of the curvature free 

energy. The constants q and c2 are the local principal curva­

tures, and have the dimensions of the inverse length. The 

spontaneous radius r° characterizes the asymmetry of the 

layer. To apply these terms to the model, we substitute 1/^ 

for Ci and c2, and 空5 for r°. Since this in an energy per 

surfactant molecule the curvature free energy of the system 

Fc can be written as

Fc=2KNs(l-就 °)後 (26)

When the oil and water fractions are comparable the asym­

metric effect by is of no consequence, and usually 

is larger than & From the relation of p=NW, the free ene­

rgy density of Fc becomes

Fc~ = 2Kp[l 一羔佃。一侦旋。]膏 (27)

The parameter determimes a favored radius of curvature 

as that which minimizes Fc at fixed composition: g=oo (no 

curvature) when (<[)o —<()^)/^0^0 [that is, when(阮>0归 and 

or 饥<(阮 and g°>0, and or = or &=£°/2(《阮 

阮)when (取)一《阮)代°〉0・ When 饥>(阮，positive 球 favors 

W/O type curvature (concave to water), and vice versa when 

OoVOw, negative favors O/W type (convex to water).

Form Eqs. (16), (18), (20), (24) and (27), the total free en­

ergy density Fv becomes

Fv = {fw^w^fo 0o)

一後7為3)《阮撼布3△我花(10j3/zp) (g%W)3/2/(阮饥]

-(0玖3)(阮(降ln[As3△力呼。(1(乎允，0)(我以沪％阮(阮]

+ 6丫。顿(Do/ST7、P ln(6顿《时伽£「)

+ 2Kp[l-2眄)-顿)/* (28)

In real systems the entropy of mixing is finite because the 

mixing cannot occur on a scale smaller than the sizes of 

the molecules themselves. Therefore, we can not use Eq. 

(28) itself to describe the system. We thus indroduce a as 

a microscopic cutoff length 13J4'20 and a has a typical intra­

molecular distance about 3-5 A. We use = 5 A in our model. 

In case of ^>a the total free energy Fv is given by Eq. (28), 

but Fv—co when and so, we endow g with the minimum 

condition at ^—a. This represents that we do not find the 

meaning for the system for which

Calculation of Free Energy. Figure 1 shows schema­

tically the free energy density, Fv (<|), p; g) given by Eq. 

(28), as a function of g at fixed 0 and p. The decreasing 

of the free energy density as « decreases toward to a is 

due to the factor l/^3 in F€tV given by Eq. (18). At large 

value of & the increasing of the free energy density as g 

increases is due to the term In in FslV give by Eq. (24). 

In an intermediate range of & as between & and the

Figure 1. A schematic plot of Fv (0, p; f) as a function of £ 

at fixed Q p. Fv (Q p; 0= +oo at It has local minimum 

at &=& and a local maximum at &=&.

free energy density decreases with increasing § It is due 

to the factor 1/g in FiiV given by Eq. (20) and the factor 

1/£2 in Fc,v given by Eq. (27). The minimums at £=馈 and 

a correspond to the stable microemulsion and almost pure 

oil or water phase at fixed(D and p, respectively.

The adsorption process of surfactant molecules on a planar 

oil- water interface at a fixed temperature can be described 

by the free energy of monolayer Fm. From Eqs. (19) and 

(21),风 can be written as

F„ =F,+Fs=NAya+Nsfs (I) (29)

The first term of Eq. (29) represents the free energy of the 

bare oil- water interface and the second term correspond 

to the free energy of the monolayer. Then, from the relation 

of NA = EM, the free energy of the monolayer per surfactant

molecule is

"2)= 2y°+/s(2) (30)

The adsorbed surfactant molecules exert a lateral pres-

sure
□（»=—決 (31)

which reduces the interfacial tension20

丫协=肮（£）/a £=y。—n© (32)

As the lateral pressure n(E) increases with decreasing £, 

at a particular Z—S* the bare interfacial tension could, in 

principle, be precisely compensated by the lateral pressure 

leading to vanishing interfacial tension. And so, if Fi and 

Fs are the wh이e of the total free energy of the system, 

the minimum at & may occur where

Y°TI(Z*)=0 (33)

They call it the Schulman condition and refer to the state 
of the interfacial layer in which y0= 11(^*) as the saturate 

state.

From Eqs. (4), (23), (31) and (33), we can derive the cell 

size gs by the Schulman condition and this may be a good 

approximation of

导=6丫。饥0仍邛 (34)

Because of other terms in the free energy F the condition 

Eq. (33) for the free energy minimum at S=gs does not 

hold exactly, but it does often hold with high accuracy.



338 Bull. Korean Chem. Soc., Vol. 12, No. 3, 1991 Kyung-Sup Yoon and Hyungsuk Pak

Figure 2. A schematic plot of Fr (©, r) as a function of two 

composition variables, 0 and r. The numbers 1 and 2 correspond 

to the stable two-phase equilibria.

We can define the reduced free energy as

F^(a3/kT)Fv

=(“9/先 丁)[血 e+/o(i - e)]

一e(l — e)2 InEAii?3 Av0^M^a0)/x3

-150(1-0) ln(x)/2%3

一妒(1 一 o)血[对仏5"晞做成

+舛(1一e)/x-i inied-e)/£pd

+K/c[l - XX°(1 一 2切]次2 (35)

where(|>=(>呼,and the dimensionles quantities x，r, a,, y, 

Kr, x° and & are given by

(乂21), T=a3pt aj=Vj/a3f y^^^/kT,

Kr=2K/a2kT, 乂° =眾°, 2，=»/防 (36)

At fixed e and p, by minimization of Fr the cell size is ob- 

aind from

30(1-<[))2 \n(Aw3^voe/a^ao) + 450(1 -(|))2 ln(x)/2

—1舛(1 — 0)2/2 — 3<D(1 — 6 lnE(|)(l—0)]

+ 3妒(1 - 0)瓦心尸应切仞危沪a初)+>x20(l 一 0)

+ 以3—2K々+Ke故。(1一的)=0 (37)

From Eqs. (34) and (36), the approximation to 

which is given by the Schulman condition Eq. (33) is

X/느•火於 (38)

The holds when the terms ——0) and r/3 are dominant 

in Eq. (37). In our numerical calculations we use the approxi­

mate Xn [Eq. (38)1 It is very close to the exact xn from 

Eq. (37) if © is not very small or large.

Conditions of Phase Equilibrium. The phase equili­

bria arise from concavities in the Fr (e, r) surface and are 

found by the common tangent construction.21 In Figure 2, 

we let the common tangent plane on the Fr S，t) surface. 

When the surface Fr 0), r) has singly tangent plane at one 

point, the coordinate of a point of single tangency is the 

composition of a single and stable phase. When a plane is 

simultaneously tangent to the surface at two points, the ccx)r- 

dinates of two points of double tangency are the compositions 

of two stable and coexisting phases. Similarly, triple tangency 

gives three-phase equilibrium.

To obtain the coordinates of the points above the common 

tangent plane, we must know the common tangency from 

the Fr 0), r). As the chemical potentials of <|)and r, we 

find

]心=(dFJ。©爲 x=x，

禹드 (키*/dp)心哉7/z* 亦。爲 x (39)

At first, we multiply Eq. (39) by a3/kT, and then subtract 

from 卩> the physically inconsequential term [.a3(fw—fo)/kT], 

and also subtract from the equally arbitrary term Lin 

(乙。)].Thereby we define two thermodynamic dimension- 

ess functions 顼(D, Q for 由 and 厶0), r) for 禹 which are 

given as

丄祯，。=一(1 一 0)(1 —師)ln(Ai铲A&m瑯2做/乂3

-15(l-2(i)) ln(x)/2x3+(l-2(|)) ln[(|)(l-<j))]43

+(1 - 2(j))/x3 - 0(2 - 30)词国)质

+矶 1 - 20)/%-r(l - 20)/(j)(l - ©) + 2Krrx°/x

L純 r) = - ln[(j)(l-(|))/tx] +KrEl-xx°(l_2([>)]//2 (40)

The conditions of phase equilibrium between a phase a at 

妒，ra and a phase P at 时，/ are

4(帕寸)=處时，K),奴(帕(硏K) (41)

For three-phase equilibrium among phases a, B, and y, we 

append the additional conditions 丄>(时，rp)=L(t)((|)Y, rY) and 

L(硏 K)=L純‘，ty) to Eq. (41). Here a and y refer to 

almost pure oil or water phase, and P refers to the micro­

emulsion phase. In Eq. (40), x= 1 in almost pure phases and 

X= from Eq. (38) in the microemulsion phase.

The remaining condition of the pase equilibrium is as fol­

lows. From Figure 2, the coordinate of a point P at0 

is (0, G) and at this point R G is the value of Fr 0), t). 

We define the potential G«D, t), Legendre transform of Fr 

(<D，r), that is given as

G@, r)=Fr 師，r) -(\>(dFr 伽)x - r(dFr 以 x (42)

The potential G(e, t) has a common value G in all coexisting 

phases by a simple geometry. From Eqs. (35), (40) and (42), 

the defined function H0), r) for G 0), r) is written as

i)=-w』(e, r)-(i)(i-<f))2 m(A病以瑯2知)/又3

-150(1 —e) ln(x)/2x3+(t>(l-(|)) ln[(D(l - e)说3 

一妒(1-<D)血(1由3△如，巩诺2(所)/乂3

+外(1- e)/xr (43)

Therefore, the remaining condition of phase equilibrium be­

tween a phase a at 妒，L and a phases 0, t3 is

引帕 或rp) (44)

For three-phase equilibrium among phases a, 8 and 丫，we 

append the additional condition H (时，(帕 ty) to Eq. 

(44). Also in Eq. (43), x= 1 in almost pure phases and /=心 

from Eq. (38) in the microemulsion phase. For the a, p two-
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。 p w
Figure 3. Phase diagram for 0.0 and 瓦느2。The numbers 

1, 2, 3 indicate the number of coexisting phases, and the tielines 

in the two-phase regions are shown. Three one-phases are al­

most pure oil-phase (a), microemulsion phase (P)and almost 

pure water-phase (y).

phase equilibria, there are four composition variables, 

ra,(|)p, and K, to be determined, and they give the coexist­

ence curves that form the boundaries of the two-phase re­

gions in the 0 and t plane, and all the tielines in that re­

gions. For the three-phase equilibria, there are six composi­

tion variables, 0a, ra,罪,(|)Y and rY which give the coordi­

nates of three isolated points in the 0 and r plane, to be 

determined uniquely by the six equilibrium conditions.

Results and Discussion

Phase Diagrams. Figure 3 shows the phase diagram 

for x° =0.0 and Kr=2.Q, and here, one can see the asymme­

try without considering the spontaneous curvature. The two 

invisible a, y one-phase regions near r=0, 4)=0 and 1 on 

this scale show almost pure oil and water phases with the 

cell seze x—也，respectively. The p phase arises from the 

X= and it is a microemulsion phase. The ap and py tieli­

nes in the two-phase regions along the boundaries of the 

phase diagram indicate the coexistence of the microemulsion 

phase with almost pure oil (phase a) and pure water (phase 

y), respectively. The compositions of the a,。and y phases 

in the three-phase equilibrium in Figure 3 are <|)a=1.18X 

10 \ ^=2.89><]()—4, 6 = 0.3203, 7=0.1254,(|)7=0.9995 and 

廿=1.29X10—斗 The compositions(俨 and are roughly 

the mutual solubility of water and oil in the a and y phases. 

From Eq. (38), we calculate % of the g phase in the three- 

phase equilibrium to be ”=31.42. Thus, the model size of 
the middle-phase microemulsion is about 157 A if we think 

of a as about 5 A. This is reasonable size compared with 

the general experimental data.10,26 From Eq. (37), we also 

can calculate the exact size at the same middle-phase com­

position to be xp —31.41, which is nea리y close to the size 

obtained by Eq. (38), so the Schulman condition Eq. (33) 

nearly holds in that microemulsion. If we extend the Schul­

man condition to the almost pure phases the cell sizes of 

a and B phases in the three-phase equilibrium are 須그！%丫스：L 

48, which nearly correspond to microscopic cutoff length a.

Effects of Curvature Parameters. Figures 4(a)-(c) 

show the asymmetric effect of phase diagrams for the change 

of spontaneous curvature [(a) x° = — 0.05, (b) x°= — 0.01 and

Figure 4. Phase diagram for Kr=3.0 at (a) %° = — 0.05, (b) %° 

=—0.1 and (c) x° = 0.03. Three one-phases are almost pure oil­

phase (a), microemulsion phase (p) and almost pure brine-phase 

(y). The O/W-O and W/O-W indicate coexisting two-phase re­

gions between Q/W-type microemulsion and almost pure oil, and 

between W7O-type microemulsion and almost pure water, respe- 

ctiv 이 y.

(c) x° = 0.03] that characterizes the curvature of the surfac- 

tmit layer at Kr=3.Q. When x° is negative [Figure 4(a)] the 

layer has the tendency of oill concave (Q4F type), Winsor27 

type I region increases, and on the contrary when x° is posi­

tive [Figure 4(c)l type II region increases. That is to say, 

as x° increases (in real systems, increasing of the salinity) 

the composition 0, r of the middle-phase moves at the near 

(t>=l to the near 0=0. This is denoted as type LII-III trans­

formation.17 The oil-water symmertic phase diagram of x°=0.0 

in other papers13,14 is similar to that of = — 0.01 [Figure 

4(b)] in this paper. This represents that our model has the 

property of the more water concavity than others, and it
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Figure 5. Phase diagram for %°=0.0 with the variation of Kr 

(Kr=5.0, 3.0 and 2.0). Three one-phases are almost pure oil­

phase (a), microemulsion phase (p) and almost pure water-phase 

(Y).

X°

Figure 6. Cell size % of the p phase in the three-phase equili­

brium as a function of %° with the variation of Kr ㈤=2.3, 2.0, 

1.8 and 1.5).

coincides with the tendency that W/O type microemulsion 

may be favored with small sizes than O/W type.28 In Figures 

4(a)-(c), the three-phase regions still exist. However, for large 

X° the three-phase regions may vanish [one can see in Fi­

gure (8)1 Along the phase boundaries, g (=xa) scales with

(=2a/x°) indicates that the phase separation occurs when 

§ is on the order of This is an indication of the emulsifi­

cation failure instability19 that precludes the formation of ce­

lls with a size large than In our model from the relation 

of x° = 2a/^° in Eq. (36), when %° is nearly —2.0 and 2.0 

the three-phase equilibrium regions may disappear.

Figure 5 shows the changing effect of the phase digram 

with the variation of Kr at x° = 0.0. At large Kr value the 

interface in very stiff. This means the decreasing of the total 

interfacial area, and so means the deceasing of the total 

adsorbing surfactant. In real system,29 the microemulsion of 

a large Kr does not have cosurfactant or has only small quan­

tity of cosurfactant. On the other hand at small Kr value 

by addition of some suitable cosurfactant, the interface is 

flexible and strongly wrinkled, this means the increasng of 

the interfacial area, and then the increasing of the total ad­

sorbing surfactant. The results of this numerical calculations 

for the cell size of the 0 phase in the three-phase equilibrium 
at different Kr are 戒=5.0=72.17,成=3.0=54.70 and xlr=2.o 

= 3L42.

In(KR)

Figure 7. ln(K) as a function of %° at different % (x—12.868 

and 17.404). The dashed-straight line of InK, for x° is InKu con­

stant +1.91%0.

Figure 6 shows the changing effect of the cell sizes of 

the middle phases for change of x° with the variation of Kr 

value. Of course the relation of / and Kr is the same as 

Figure 6, but the effect of Kr for the change of % at various 

%° show some difference. That is to say, that effect is larger- 

er at small x°- This result shows that because the interfacial 

layer is less rigid at large cell length than small one, the 

layer of large cell length tends to bend easily even at a 

small spontaneous curvature.

The relation of Kr and x° at the same cell sizes is shown 

in Figure 7, which is the plot of lnKr for the change of %° 

when cell sizes are % =17.404 and 12.868. As to be expected 

even at Figure 6, the environment that gives the same cell 

size % is that %° increases with increasing of Kr. In our nu­

merical calculation of such relation, we obtain the dashed- 

straight line of \nKr for x°f ie.t \nKr^ constant+1.91 x°. Like­

wise, we obtain the relation between % of the middle phase 

and Kr at x° = 0.0 and small Kr (it is reasonable and realistic 

in the microemulsion system.), i.e., — 0.32 + 2.06ZC. The

two relation equations represent that the cell size always 

increases with decreasing x° (increasing of 鄭)and increas­

ing Krt and so, it is very sensitive to the spontaneous radius 

and rigidity constant. At small Kr the decreasing of x° may 

destabilize the stable microemulsion phase.

Phase Equilibria in Critical Regions. By this time 

we only considered the case of no spontaneous curvature 

(X° = O.O) or if any, of small curvature (from —0.05 to 0.03). 

We now consider the case of finite spontaneous curvature. 

Figure 8(a)-(c) show the change of phase diagrams as inc­

reasing the absolute value of x° in the region of the y phase
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Figure 8. Phase diagrams in the region of water-rich phase for K=3.0 at (a) ~ 1.0. (b) %° = —1.5 and (c) %° = —1.82. The

numbers 1, 2, 3 indicate the number of coexisting phases. Two one-phases are microemulsion phase (p) and almost pure brine­

phase (y).

at K=3.0. For large enough that can affect profoundly 

the Py phase equilibrium (water-rich side). Heavy lines are 

phase boundaries, light lines are tielines in the two-phase 

regions and the dashed lines indicate the surface of 七=1 

in Eq. (38). For = 一 L0, Figure 8(a) 아lows that the phase 

diagram is very distorted and the composition of the p phase 

in the three-phases equilibrium is 时=0.9328, 04839. For

X°= —1.5, Figure 8(b) shows that the py coexistence curve 

terminates at the point C on the dashed line, and the compo­

sition of a point C is 飢=0.9810, 03374. In the small

py coexistence region,学fz while always, i.e.t 馈 

The point C is the point at which there is no distinction 

between the。and y phases, and is therefore a critical point. 

The dashed line C-C has the same composition 0，r and 

the same value a of their structural size g, and so the point 

C is called as a critical point and is also called as a tricritical 

point.1718 As %° continues to increase negatively the three- 

phase triangle and the py two-phase region disappear. At 

the moment of their disappearance the critical point C and 

the p and y vertices of the three-phase triangle coincide, 

while the ga and ya two sides of the triangle coincide and 

become a single tieline between the Py critical phase and 

a coexisting a phase. Figure 8(c) shows the critical endpoint 

C and a critical tieline between the py critical phase at C 

and a coexisting a phase. Then the apy phase equilibrium 

is at its py critical endpoint. In our numerical calculations, 

the compositions of the point C and the endpoint of critical 

tieline in a coexising a phase are(Dc= 0.9446, 0.9467,

0^5.21 X10 6 and 珍=3.12X10" at x°=-1.82. On the 

other hand, the change of phase diagrams with increasing 

X° in the region of the a phase shows the same tendency 

with decreasing x° in the region of the y phase. For large 

enough x°> it can affect profoundly Pa phase equilibrium 

(oil-rich side). For K=3.0 and %° = 1.85, the 邱丫 phase equi­

librium is at the Pa critical endpoint. In our numerical calcul­

ations, the compositions of the critical endpoint and the end 

point of critical tieline in the y phase are (j)c= 0.0491, r 

= 0.8450,祝=0.99997 and <^= 1.26X10"8.

Conclusions

In this paper, we study a phenomenological model on the 

basis of the cubic lattice cell and show the intrinsic asymme­

try of the phase diagram by non-equivalency of oil and water.

The Schulman condition is found to hold to good approxi­

mation is the middle-phase microemulsion, but it does not 

hold very well in the region of 阮Vl by reason of other 

energy terms (in reality, these are important terms in desc­

ribing microemulsions) besides the interfacial free energy 

terms.

The oil- and water-filled domains in the middle-phase mi­

croemulsion are about 50-150 A and depend sensitively on 

the curvature parameters, rigidity constant K and sponta­

neous radius ^°.

The relation between K and and the same cell size 

is found as Xoc a2kT exp (3.82 a/^°\

Our model predicts three-phase equilibrium including a 

middle-phase microemulsion, and also shows the critical po­

ints and endpoints though it has some artificialities.
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