• Title/Summary/Keyword: Chemical-microbiological quality

Search Result 129, Processing Time 0.019 seconds

Effects of Electron Beam Irradiation and High-Pressure Treatment with Citrus Peel Extract on the Microbiological, Chemical and Sensory Qualities of Marinated Chicken Breast Meat

  • Kim, Hyun-Joo;Alahakoon, Amali U.;Jayasena, Dinesh D.;Khan, Muhammad I.;Nam, Ki Chang;Jo, Cheorun;Jung, Samooel
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.215-221
    • /
    • 2015
  • Chicken breast meat samples were injected with marinade solution (salt, sugar, phosphate, monosodium glutamate, and nucleic acid) with or without 2% citrus peel extract (CPE), and then a subset were irradiated with a 1 or 2 kGy electron beam (EB) and/or subjected to high-pressure (HP) at 300 or 400 MPa. The initial total aerobic bacterial (TAB) count of the control sample was 4.57 log CFU/g and reached 7.17 log CFU/g after 3 days of storage at $4^{\circ}C$. The 2 kGy EB reduced the TAB count to 4.61 log CFU/g after 7 days. The 400 MPa HP treatment was also effective in reducing the TAB count, but the effect was slightly less than that noted with the 2 kGy EB. The CPE, in combination with the EB and HP, decreased the TAB count by 1.71 and 1.32 log CFU/g at the initial stage and further decreased the count during storage. The 2 kGy EB and the HP (300 and 400 MPa) increased the thiobarbituric acid-reactive substances value, whereas the CPE did not show an antioxidative effect. The EB and HP caused no difference in the sensory qualities. In contrast, the CPE decreased all sensory qualities tested. Sensory panelists commented that the samples with CPE were not in the "rejection" category but were "unfamiliar" for chicken breast meat. In conclusion, the EB was more effective than HP in improving the microbial quality of marinated chicken breast meat. The use of CPE in the marinade solution may synergistically increase the shelf life; however, it is necessary to develop an appropriate formulation to ensure that the sensory qualities are maintained.

Effect of Preservatives and Heat Treatment on the Storage of Low-salt Kimchi (대체염을 이용한 저염 김치의 보존성 연장을 위한 보존제와 열처리 효과)

  • Hahn, Young-Sook;Oh, Ji-Young;Kim, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.565-569
    • /
    • 2002
  • This study was carried out to estimate the effects of preservatives (alcohol, adipic acid) and heat treatment $(40^{\circ}C,\;60^{\circ}C)$ for the prolongation of shelf-life on low-salt Kimchi. Low-salt Kimchi was prepared with salt replacements (NaCl 50%, KCl 36%, $MgSO_4$ 10%, $CaSO_4$ 3%, glutamic acid 0.2%). Chemical characteristics and microbiological parameters were monitored during fermentation at $20^{\circ}C$. When three kinds of preservative which were alcohol 2.0%, adipic acid 0.1% and their mixture were added to low-salt Kimchi, shelf-life of them were prolonged. To extend the shelf-life of low-salt Kimchi, when the heat treatment at $40^{\circ}C$ and $60^{\circ}C$ were tried, heat treatment at $60^{\circ}C$ was superior than at $40^{\circ}C$. In sensory evaluation of low-salt Kimchi, the control was showed the best quality in the overall acceptability. And low-salt Kimchi treated at $40^{\circ}C$ showed the most similar characteristics to the control Kimchi.

Monitoring of Sulfur Dioxide, Carotenoid Contents and Bacillus cereus Contamination of Dried Sweet Potato in Circulating Dried Agricultural Products (국내 유통 건조 농산물 중 고구마 말랭이의 이산화황, 카로티노이드 함량 및 바실러스 세레우스오염 정도 조사)

  • Lee, Hyeon Min;Park, Hyun Ji;Kim, Ji Na;Shin, Weon Sun;Kim, Eun Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.477-484
    • /
    • 2017
  • This study was conducted to investigate the content of sulfur dioxide, carotenoids and the degree of contamination of Bacillus cereus in 33 kinds of dried sweet potato from domestic mainly dried agricultural products in Korea. According to the characteristics of dried sweet potato samples, it was classified into four clusters and as a result of analyzing the contents of sulfur dioxide, carotenoids and the degree of contamination B. cereus was no significant difference among the clusters. The detection ranges of residual sulfur dioxide from 33 dried sweet potatoes ranged from 0.38 to 28.16 mg/kg, three cases (9.09%) were detected at the reference level of 10 mg/kg or more. But no samples exceeding 30 mg/kg, the tolerance level of sulfur dioxide in dried sweet potatoes were detected. Since dried sweet potato does not have a standard for carotenoids, when comparing the national and international standards of carotenoids, the range of detection of carotenoids in dried sweet potato was $46{\sim}2,663{\mu}g$/100 g, which was within the reference range of $0{\sim}9,826{\mu}g$/100 g. In principle colonies suspected to be B. cereus in dried sweet potato were not detected. In 7 cases (21.21%), there were detected in the range of 0.05~1.59 log CFU/g but not more than 3 log CFU/g as the reference value. The results of this study are expected to be used as basic data to establish quality standard for dried sweet potatoes. In order to control the quality of dried sweet potatoes in domestic market, raw materials, drying method and packaging after distribution, it is necessary to maintain and maintain the process steadily.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Studies on the Changes in Chemical Composition and Microbiological Aspects of Raw Milk by Microwave Heating (Microwave 열처리에 의한 원유의 화학적 및 미생물학적 성상의 변화에 관한 연구)

  • Shin, Byeong Hong;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.181-198
    • /
    • 1998
  • In order to determine the optimum pasteurization conditions by microwave heating(MWH) at $50^{\circ}C{\sim}70^{\circ}C$ for 30 minute compared with water bath heating(WBH) at $65^{\circ}C$ for 30minute during storage at $5^{\circ}C$, the chemical composition, microbiological changes and keeping quality were examined and the results were as follows: 1. The fat protein lactose, total solid contents of raw milk, at $50{\sim}70^{\circ}C$ for 30 min. in MWH and at 65 for $30^{\circ}C$ min. in WBH did not changed significantly during the storage at $5^{\circ}C$. 2. The pH and acidity for the raw milk untreated were 6.75 and 0.16%, and those of MWH heated and WBH milk wee 6.75~6.50 and 0.16%~0.19%, phosphatase test were negative at $61^{\circ}C$ for 20 min. at $62^{\circ}C$ for 15 min. at $63^{\circ}C$ for 10 min. at $64^{\circ}C$ for 5 min. at $65^{\circ}C$ for 5 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. 3. Whey protein content was $18.53mg/m{\ell}$ in raw milk untreated, however, those were decreased as the heating temperature increased. The proteolytic activity of treated milk by WBH(44%) was lower than that by MWH(94%). 4. Total bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.8{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.4{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because total bacteria count did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging, Also, total bacteria counts for treated milk were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 5. Coliform bacteria counts were $2.6{\times}10^3CFU/m{\ell}$ in raw milk untreated. There were not detected at $55^{\circ}C{\sim}70^{\circ}C$ for 30 min. in MWH and at $65^{\circ}C$ for 30 min. in WBH. Coliform bacteria counts were not detected after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 6. Thermoduric bacteria counts were $5.2{\times}10^4CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $1.9{\times}10^3CFU/m{\ell}$ at $70^{\circ}C$ for 30min. in MWH and $2.2{\times}10^3CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. in WBH. Because thermoduric bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30 min. and $65^{\circ}C$ for 30 min. in WBH during the 10days storaging. Also, thermoduric bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH. 7. Psychrotrophic bacteria counts were $2.8{\times}10^5CFU/m{\ell}$ in raw milk untreated, $2.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$ for 30 min. $2.0{\times}10^1CFU/m{\ell}$ at $70^{\circ}C$ for 30 min. in MWH and $3.0{\times}10^1CFU/m{\ell}$ at $65^{\circ}C$for 30 min. in WBH. Because psychrotrophic bacteria counts did not increased in MWH at $65^{\circ}C$, $70^{\circ}C$ for 30min. and $65^{\circ}C$ for 30 min. in WBH during the 10 days storaging. Also, psychrotrophic bacteria counts were a most drastic decrease after $61^{\circ}C$, $62^{\circ}C$, $63^{\circ}C$, $64^{\circ}C$, $65^{\circ}C$ for 5 min. in MWH.

  • PDF

Changes of Physicochemical Properties during Fermentation of Peach Wine and Quality Improvement by Ultrafiltration (복숭아주 발효시 이화학적 특성변화와 한외여과에 의한 품질 향상)

  • 정재호;목철균;임상빈;박영서
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.506-512
    • /
    • 2003
  • Peach wine was fermented at $25^{\circ}C$ for 2 weeks using Saccharomyces cerevisiae KCCM 12224, aged at 15$^{\circ}C$ for 14 weeks, and its physicochemical and microbiological changes were investigated. The viable bacterial cell numbers, 1.4$\times$10$^3$ CFU/mL at the beginning of fermentation, increased to 2.8$\times$10$^{6}$ CFU/mL after 2 weeks, but decreased to 7.0$\times$10$^3$ CFU/mL after 14 weeks. The viable yeast cell numbers were changed from 3.4$\times$10$^2$ CFU/mL to 2.4$\times$10$^{7}$ CFU/mL during fermentation, and decreased to 4.0$\times$10$^4$ CFU/mL after aging. Turbidity total sugar content, reducing sugar content, solid content and b value of peach wine decreased during fermentation but acidity, alcohol content, L and a value increased. Most physicochemical properties except alcohol content and reducing sugar content were not changed significantly during aging. When peach wine was filtered through 0.45 ${\mu}{\textrm}{m}$ nitrocellulose membrane followed by various ultrafiltration membranes with different molecular weight cut-off values, Biomax 100K membrane, with 79 liter/$m^2$/h (LMH) of initial flux, was suitable for ultrafiltration process of peach wine. These membrane filtration treatments resulted in complete removal of microorganisms and decrease in turbidity and alcohol content without changes in other chemical properties. The physicochemical properties of peach wine were not changed and any microorganisms were not found during the storage at 3$0^{\circ}C$ for 12 Weeks.

Effects of Pre-heat Treatments on Milk Protein and Microorganism Aspects in Raw Milk (예열처리(豫熱處理)가 원유(原乳)의 단백질(蛋白質) 및 미생물(微生物)에 미치는 영향(影響))

  • Kim, Seung Sub;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.153-166
    • /
    • 1993
  • The experiments were conducted to improve raw milk quality during storage, the chemical composition and microbiological aspect of raw milk, milk thermized at $65^{\circ}C$ for 30 second, and $75^{\circ}C$ for 2 second stored at $5^{\circ}C$ for 4 days were investigated. The result obtained were summarized as follows : 1. During storage of raw and thermized milk, in the composition of milk fat, milk protein, lactose and total solid did not change significantly. 2. The range of pH and acidity for the raw milk were 6.73~5.94 and 0.16~0.27% respectively and those of the thermized milk were 6.79~6.62 and 0.16~0.17% respectively. The phosphatase test were negative in heated milk. 3. The composition of total nitrogen, NCN and whey protein were decreased, wherease those of NPN and casein were increased in heat treated milk. 4. The compositions of total nitrogen and casein were decreased as the storage period advanced, wherese those of NCN and NPN were increased. However, the composition of whey protein did not significantly change. 5. The number of coliform bacteria was not found in thermized milk. but were gradually increased in raw milk during storage period. 6. Raw milk had total bacteria count as $5.6{\times}10^6/ml$, psychrotrophic bacteria $1.8{\times}10^6/ml$ and thermoduric bacteria $1.6{\times}10^5/ml$, as the heat treatment increased microorganism counts decreased to milk thermized at $75^{\circ}C$, for 2 sec. $3.0{\times}10^3/ml$, $1.5{\times}10/ml$ and $2.7{\times}10^3/ml$ respectively. 7. The count of thermoduric bacteria, psychrotrophic bacteria and total bacteria were increased during storage period, and more rapidly increased in raw milk than in heat treated milk.

  • PDF

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.

Ultrafiltration for Quality Improvement of Apple Wine (한외여과공정을 이용한 사과주의 품질개선)

  • Chung, Jae-Ho;Mok, Chul-Kyoon;Lim, Sang-Bin;Park, Young-Seo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.201-206
    • /
    • 2003
  • An apple wine was prepared by fermentation at $25^{\circ}C$ for 2 weeks using Saccha개myces cerevisiae KCCM 12224, followed by aging at $15^{\circ}C$ for 14 weeks, and its physicochemical and microbiological changes were investigated. The viable bacterial cell numbers, increased from $1.4{\times}10^3\;CFU/ml$ at the beginning of fermentation, to $2.8{\times}10^6\;CFU/ml$ after 2 weeks, but decreased to $1.0{\times}10^5\;CFU/ml$ after aging. The viable yeast cell numbers changed from $4.3{\times}10^4\;CFU/ml$ to $1.2{\times}10^7\;CFU/ml$ during the fermentation, and decreased to $1.2{\times}10^4\;CFU/ml$ after aging. Sugar content changed from $20.0^{\circ}Brix$ to $8.5{\circ}Brix$, and reducing sugar content was changed from 9.66% to 6.44%. Alcohol content and acidity increased to 7.0% and from 0.19% to 0.24%, respectively. No changes in acidity, pH, and sugar content were observed during the aging, but reducing sugar and solid contents decreased. When apple wine was fultered through $0.45\;{\mu}m$ nitrocellulose membrane followed by various ultrafiltration membranes with different molecular weight cut-off values, the initial flux $(121.2\;liter/m^2/h)$ and the average flux of Biomax 100k membrane were the highest among the membranes used. These membrane filtration treatments resulted in complete removal of microorganisms as well as decrease in turbidity and solid content without changes in other chemical properties. No changes in the physicochemical properties of the apple wine and no microorganisms were detected during the storage at $156{\circ}C$ for 6 weeks.