• 제목/요약/키워드: Chemical waves

Search Result 167, Processing Time 0.021 seconds

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Extraction of Genistein and Formononetin from Sophoraflavescens Aiton using Ultrasonic wave (초음파를 이용한 고삼에 포함된 Genistein 및 Formononetin의 추출)

  • Kim, Young Sik;Lee, Kwang Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.258-261
    • /
    • 2009
  • In this work, we the ettect on extraction amounts and general composition content of phytoestrogen genistein and formononetin extracted from Sophoraflavescens Aiton by various ultrasonic waves(35, 72, and 170 KHz) and extraction time(30, and 60 min) were compared using extraction solvent water 100%. The pretreatment step was composed of ultrasonic waves extraction, filtration, concentration, and membrane filtration. The extracted sample was analyzed by reversed-phase high performance liquid chromatography(RP-HPLC). And the mobile phase applied was linearly changed with A/B of 80/20~65/35 vol% for 60 min(A water/acetic acid, 99.9/0.1 vol%, B acetonitrile/acetic acid, 99.9/0.1 vol%). The experimental results, general composition carbohydrate(0.255 to 0.413%) excepts, other ingredients was confirmed almost similarly. Also, The highest yield of extraction amount 3.17g was obtained by ultrasonic waves with a frequency of 170 KHz and an extraction time of 60 min. This work offers would be useful for chemical and biological studies of natural plants and its products.

Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials

  • Kim, Yeon-Yi;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The conducting polymer-coated multi-walled carbon nanotubes (MWCNTs) were prepared by template polymerization of aniline and pyrrole on the surface of MWCNTs in order to develop the novel electromagnetic interference (EMI) shielding materials. The conducting polymer phases formed on the surface of MWCNTs were confirmed by field emission-scanning electron microscopy and field emission-transmission electron microscopy. Both permittivity and permeability were significantly improved for the conducting polymer-coated MWCNTs due to the intrinsic electrical properties of MWCNTs and the conducting properties of coated polymers. The electromagnetic waves were effectively absorbed based on the permittivity nature of conducting polymer and MWCNTs preventing the secondary interference from reflecting the electromagnetic waves. The highly improved EMI shielding efficiency was also obtained for the conducting polymer-coated MWCNTs showing the synergistic effects by combining MWCNTs and the conducting polymers.

Effects of Ultrasonic Waves on Filtration Performance and Fermentation in an Internal Membrane-Filtration Bioreactor

  • PARK, BYUNG GEON;WOO GI LEE;WEI ZHANG;YONG KEUN CHANG;HO NAM CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.243-248
    • /
    • 1999
  • Ultrasonic wave technology was employed to improve filtration performance and ethanol production in a bioreactor equipped with an internal ceramic-membrane filter module. The filtration performance was found to depend on the power and the pattern of ultrasonic wave irradiation. Under the optimized conditions (irradiation time: 25 see, period: 5 min, and ultrasonic power: 60 W), the flux was improved with the periodic-pause method by 200-700% compared with the control (with no irradiation), while the improvement was only 30 to 90% without the periodic-pause method. The final ethanol concentration also increased slightly. However, in a more severe condition (irradiation time: 2.5 min, period: 5 min, and ultrasonic power: 110 W), the irradiation of ultrasonic waves was observed to disturb cell integrity and viability, and thus to decrease ethanol production.

  • PDF

Thermodynamic Study on the Limit of Applicability of Navier-Stokes Equation to Stationary Plane Shock-Waves (정상 평면충격파에 대한 Navier-Stokes 방정식의 적용한계에 관한 열역학적 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.409-414
    • /
    • 1996
  • The limit of applicability of Navier-Stokes equation to stationary plane shock-waves is examined by using the principle of minimum entropy production of linear irreversible thermodynamics. In order to obtain analytic results, the equation is linearized near the equilibrium of downstream. Results show that the solution of Navier-Stokes equation which fits the boundary condition of far downstream flow is consistent with the thermodynamic requirement within the first order when the solution is expanded around the M=1, where M is the Mach number of upstream speed.

  • PDF

Electrochemical Studies of Oxovanadium(IV) Complex of 2-Amino-1-cyclopentene-1-dithiocarboxylate

  • Young-Jin Kim;Duck-Soo Park;Yoon-Bo Shim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 1990
  • The redox properties of 2-amino-1-cyclopentene-1-dithiocarboxylate anion (acdc) and its oxovanadium complex, $VO(acdc)_2$ have been investigated in dimethylformamide (DMF) with polarography and cyclic voltammetry. Bis(2-amino-1-cyclopentene-1-dithiocarboxylate) oxovanadium(IV) exhibits two polarographic oxidation waves and two reduction waves in the potential range from +0.50V to - 2.4V vs. the Ag/AgCl (DMF) reference electrode. The second oxidation wave appeared at - 0.08V is found to be reversible and is attributed to the formation of $VO(acdc)_2\;^+$. The first reduction process (at - 0.60V) is also reversible and this reduction process is caused by the electrode process of formation of $VO(acdc)_2$-species. The half wave potential for the reduction, V(IV)$\to$V(III) is more positive for oxovanadium complexes containing sulfur donor atoms than other VO(IV) complexes having oxygen or nitrogen donor atoms.

Adsorption of Macrocyclic Cobalt Complex on a Glassy Carbon Electrode for the Electrocatalytic Reduction of $O_2$

  • 강찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.754-760
    • /
    • 1998
  • It was found that the adsorption of a cobalt(III) complex with a macrocyclic ligand, C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (hmc), was induced on a glassy carbon electrode by heavily oxidizing the electrode surface. Adsorption properties are discussed. The glassy carbon electrode with the adsorbed complex was employed to see the catalytic activities for the electro-reduction of O2. In the presence of oxygen, reduction of (hmc)Co3+ showed two cathodic waves in cyclic voltammetry. Compared to the edge plane graphite electrode at which two cathodic waves were also observed in a previous study, catalytic reduction of O2 occurred in the potential region of the first wave while it happened in the second wave region with the other electrode. A rotating disk electrode after the same treatment was employed to study the mechanism of the O2 reduction and two-electron reduction of O2 was observed. The difference from the previous results was explained by the different reactivity of the (hmc)CoOOH2+ intermediate, which is produced after the two electron reduction of (hmc)Co3+ in the presence of O2.

The Addition Effect of on Methane Ignition behind Reflected Shock Waves

  • Ji, Seong Bae;Kim, Gil Yeong;Sin, Gwan Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.957-958
    • /
    • 2000
  • The addition effect of $CH^3Br$ on the ignition of methane was investigated in the temperature range of 1537-1920 K behind reflected shock waves. The ignition delay times were measured by the sudden increase of pres-sure and OH emission in the $CH_4-O_2-Ar$ system containing small amount of $CH_3Br.$ The delay times of mix-tures with $CH_3Br$ were shorter than those without $CH_3Br.$ The promotion of ignition by $CH_3Br$ was caused by the relative fast decomposition rate in additive. To clarify the addition effect of $CH_3Br$ from the viewpoint of the reaction mechanism, computational analyses were performed in $CH_4-CH_3Br-O_2-Ar$ mixtures.