• Title/Summary/Keyword: Chemical shifts

Search Result 302, Processing Time 0.03 seconds

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.

Effects of Ionizable Groups on the Redox Potentials of Cytochrome c₃from D. vulgaris Miyazaki F

  • 박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.820-826
    • /
    • 1996
  • The p2H dependence of the NMR chemical shifts of the proton signals of heme methyl groups and ionizable groups in the vicinity of the heme were investigated. The p2H titration of heme methyl signals in four macroscopic oxidation states by saturation tranfer method was performed in the range between p2H 5.2 and 9.0. While the p2H dependence of the heme methyl resonance in fully oxidized state was small, most resonances in the intermediate oxidation states showed certain shifts. Particularly, methyl resonances of heme 1 (sequential heme numbering) exhibited sharp p2H dependence in acidic range. β-CH2 of the propionate of hemes 1 and 4 were titrated in the range of p2H 4.5-9.0. Only the 6-propionate group of heme 1 was protonated in this p2H range and its titration curve was similar to those of methyl resonances of heme 1 in intermediate oxidation states. Analysis of the microscopic redox potentials showed that they change depending on p2H. The ionizable groups responsible for the p2H dependence of these potentials are 6-propionate of heme 1 in acidic range and His 67 in basic range.

Molecular Enginering. Container Hosts Having Eight Undecyl Substituents Have High Solubility in Chlorinated Solvents

  • 백경수;주경미;권석준;임혜재;김용주
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 1997
  • Nine new solubility-increased container hosts having eight undecyl substituents were synthesized and characterized. 1H NMR spectral data showed integral inclusion state of carceplexes and their stability. 1H NMR chemical shifts of guest DMA were correlated to the host's cavity dimensions shrinked by constrictive binding. Carceplex and hemicarcerand showed their distinctive FD mass spectra.

A New Substituent Constant $σ^{c+}4_s$;a Fit for π-Participation in Modified Hammett-Brown Equation

  • 조정호;신정휴
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.347-348
    • /
    • 1996
  • A set of substituent constants, σc+, has been widely used comparing the stability of carbocation in super acid condition. Plotting of 13C chemical shifts of cationic carbon (Δδc+) against σc+ constants yields an excellent correlation with a good correlation coefficient (r=0.999) for a cyclopentyl cation system. But these σc+ constants show poor linearity in norbornenyl cations that well known to show homoallylic stabilization in a cationic condition. We calculated the new substituent constant, σc+π, and found that the new substituent constants give an excellent correlation in π- and πσ-participating cation systems.

Identification of High School Students' Understanding on the Reaction Rate Change During Chemical Equilibrium Shift (화학 평형 이동시 반응 속도 변화에 대한 고등학생들의 이해 조사)

  • Park, Jong-Yoon;Yu, Hyun-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.365-374
    • /
    • 2007
  • The purpose of this study is to investigate the students' conceptions about the reaction rate changes during the chemical equilibrium shifts and also whether the questions about basic concepts of the reaction rate are helpful for the students' understanding of reaction rate changes during the chemical equilibrium shifts. The subjects were 100 students in the 12th grade. The questionnaires were composed of A, B, and A' set, which had to be answered sequentially. The A set consisted of questions asking the change of reaction rate when chemical equilibrium was shifted, the B set was to testify the basic concepts of the reaction rate, and the A' set was the same as the A set. The results showed that the students' understanding of the reverse reaction rate change was lower than that of the forward reaction rate change during the equilibrium shift. Also it was found that students' understanding of the reaction rate change caused by adding the reactant was fairly good while their understanding of the reaction rate change caused by temperature increment was very poor. Since the students marked very high scores in the B set questions, their poor understanding for the reaction rate changes during the equilibrium shifts was not seemed to be due to the lacks of the basic knowledge of reaction rate. Instead, it was due to the failure of applying the basic knowledge of reaction rate to the changes of reaction conditions. It was also found that the average scores of A' set were statistically higher than those of A set. It means the B set items were helpful for the students to solve the A' set items. These results evidenced the possibility of set questionnaires could help the students to connect the related concepts in solving the problems.

Study on Structure of 9-Barbaralyl Cation by 1$^{13}C$ NMR Chemical Shift (탄소-13 핵자기공명 화학적 이동을 이용한 9-바바라릴 양이온의 구조에 관한 연구)

  • Jung-Hyu Shin;Yang-Soo Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.190-196
    • /
    • 1987
  • The structure of 9-barbaralyl cation was examined by Hammett-Brown plot using $^{13}C$ NMR chemical shifts. 9-Aryltricylclo$[3.3.1.0^{2,8}]$]nonan-9-yl cation (5) and 9-aryltricyclo-$[3.3.1.0^{2,8}]$nona-3,6-dien-9-yl cation (6) were prepared from the corresponding carbinols in $FSO_3H-SO_2ClF$ solution at -$120^{\circ}C$, and their chemical shifts of cation centers were measured. The slopes, ${\rho}^{C+}$ values, of the Hammett-Brown plot of (5) and (6) were -5.01 and -7.52, respectively. From these values themselves, it seemed that the double bonds participated in the delocalization of the positive charge. However, comparing ${\rho}^{C+}$ value and ${\rho}^{C_a^+}$ value in 9-barbaralyl cation (6) and those in 8,9-dehydroadamantyl cation (7), we concluded that 9-barbaralyl should be represented by the structure 4 shown in Scheme I.

  • PDF

Conformational Analysis of Cyclodextrins and Their Methylated Analogs (시클로 덱스티린과 그 메틸유도체의 구조분석)

  • Hee-Sook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.324-328
    • /
    • 1992
  • The $^1H$ NMR chemical shifts and coupling constants for ${\alpha}$-, permethyl-${\alpha}$-, ${\beta}$-and permethyl-${\beta}$-cyclodextrins in neutral aqueous media were assigned based on the 470MHz spectra. In order to obtain accurate chemical shifts and coupling constants the experimental spectra were analyzed with the Raccoon spin simulation program. The rotamer distribution around the$C_{5-}C_6$ bond of the cyclodextrins evaluated from the coupling constants of $J_{56a}$ and $J_{56b}$. In our calculation of the ${\alpha}$-, and ${\beta}$-cycliodextrin showed that gg conformers were most favorable form and tg conformers were least favorable form. It is very interesting to note the changes in $J_{56a}$, $J_{56b}$ coupling constants of permethylated ${\alpha}$- and ${\beta}$-cyclodextrins from unmodified one. The gg conformers were more increased than unmodified one and instead of tg conformers gt conformers were least favorable one upon methylation.

  • PDF

The Analytical Transfer Matrix Method Combined with Supersymmetry: Coulomb Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.

Solution and Solid-state Vanadium-51 NMR Studies of Vanadium (V) Complexes

  • Lee, Man-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • Several dioxovanadate (V) complexes are synthesized and studied by solution and solid-state 51V NMR spectroscopy. In the results, large 51V chemical shift anisotropy ({{{{ DELTA delta }}a = -800 ∼720 ppm) and quadrupole coupling (e2q /h = 7.50 ∼ 9.16 MHz) were observed in the solid-state complexes. The isotropic chemical shifts of the solid samples are very close to the values obtained from solution measurements.

  • PDF