• 제목/요약/키워드: Chemical shifts

검색결과 302건 처리시간 0.029초

Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein

  • Kim, Won-Je;Rhee, Jin-Kyu;Yi, Jong-Jae;Lee, Bong-Jin;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.36-40
    • /
    • 2014
  • Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.

$^{31}$P NMR을 이용한 카올리나이트에 흡착된 인산염의 연구 (A Study of Phosphate Adsorption on Kaolinite by $^{31}$P NMP Spectroscopy)

  • 김영규
    • 한국광물학회지
    • /
    • 제13권4호
    • /
    • pp.186-195
    • /
    • 2000
  • To study phosphate adsorption on kaolinite, $^{31}$ P MAS NMR(magic angle spinning nuclear magnetic resonance spectroscopy)has been used for kaolinite reacted in 0.1 M phosphate solutions at pH’s from 3 to 11. There are at least 3 different forms of phosphate on kaolinite. One is the phosphate physically adsorbed on kaolinite surface (outer-sphere complexes) or species left after vacuum-filtering. The second is the phosphate adsorbed by ligand exchange (inner-sphere complexes), and the third is Al-phosphate precipitates which are pH dependent. Most of the inner-spherer complexes and surface precipitates are mainly on hydroxided Al(aluminol) rather than hydroxided Si(silanol). These are pertinent with the results obtained from the phosphate adsorption experiments on silica gel and ${\gamma}$-Al$_2$O$_3$ as model compounds, respectively. The two peaks with more negative chemical shifts(more shielded) than the ortho-phosphate peak (positive chemical shift) are assigned to be the inner-sphere complexes and surface precipitates. The $^{31}$ P chemical shifts of the Al-phosphate precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates become progressively less shielded with increasing pH. For the inner-sphere complexes, decreasing phosphate protonation combined with peak averaging by rapid proton exchange among phosphate tetrahedra with different numbers of protons is though to be the reason for the peak change. The decreasing shielding with increasing pH for surface precipitates is probably due to the decreasing average number of P-O-Al linkages per tetrahedron combined with decreasing protonation like inner-sphere complexes.

  • PDF

Regiospecific Protein Perturbation on F NMR Shifts and Photoisomerization of Fluororhodopsins. An Interpretation Based on Recent Crystal Structures of Rhodopsin

  • Colmenares, Letica U.;Liu, Robert S.H.
    • Journal of Photoscience
    • /
    • 제10권1호
    • /
    • pp.81-87
    • /
    • 2003
  • Based on structural information provided by recently reported crystal structures of rhodopsin, we present rationales for the regiospecific protein perturbation on the previously reported $\^$19/F chemical shifts of the vinyl and trifluoromethylrhodopsins and their photoproducts. The crystal structures also suggest that H-bonding is a likely cause for the earlier reported regiospecific photoisomerization of the 10-fluororhodopsins. Photoisomerization was revealed by chemical shift of the photoproducts. Additionally, possible use of 3-bond F,F coupling constants for following photoisomerization of retinal-binding proteins is discussed.

  • PDF

Contact-Only and Dipolar-Only Mixtures of Lanthanide NMR Shift Reagents

  • Lee, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.433-438
    • /
    • 1986
  • Two new types of NMR shift reagents, one giving dipolar-only and the other giving contact-only shifts, can be prepared simply by mixing two appropriate $Ln(fod)_3$(Ln = Pr, Nd, Eu, and Yb) reagents in certain ratios. The $^1H$ and $^{13}C$ NMR spectra of pyridine-type substrates, quinoline and isoquinoline, whose paramagnetic shifts are normally a composite of contact and dipolar contributions with single lanthanide shift reagents, show the feasibility of this approach.

Implications of the Periodicity in NMR Chemical Shifts and Temperature Coefficients of Amide Protons in Helical Peptides

  • Suh, Jeong-Yong;Choi, Byong-Seok
    • 한국자기공명학회논문지
    • /
    • 제8권2호
    • /
    • pp.127-138
    • /
    • 2004
  • We obtained the chemical shifts of amide protons (NHs) in helical peptides at various temperatures and trifluoroethanol (TFE) concentrations using 2-dimensional NMR spectroscopy. These NH chemical shifts and their temperature dependence exhibited characteristic periodicity of 3-4 residues per cycle along the helix, where downfield shifted NHs showed larger temperature dependence. In an attempt to understand these observations, we focused on hydrogen bonding changes in the peptides and examined the validity of two possible explanations: (1) changes in intermolecular hydrogen bonding caused by differential solvation of backbone carbonyl groups by TFE, and (2) changes in intramolecular hydrogen bonding due to disproportionate variations in the hydrogen bonding within the peptide helix. Interestingly, the slowly exchanging NHs, which were on the hydrophobic side of the helix, showed consistently larger temperature dependences. This could not be explained by the differential solvation assumption, because the slowly exchanging NHs would become more labile if the preceding carbonyl groups were preferentially solvated by TFE. We suggest that the disproportionate changes in intramolecular hydrogen bonding better explain both the temperature dependence and the exchange behavior observed in this study.

  • PDF

Calculation of the NMR Cheimical Shift for a 4d$^1$ System in a Strong Crystal Field Environment of Trigonal Symmetry with a Threefold Axis of Quantization

  • Ahn, Sang-Woon;Oh, Se-Woung;Ro, Seung-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권3호
    • /
    • pp.170-178
    • /
    • 1986
  • The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a $4d^1$ system in a strong crystal field environment of trigonal symmetry, when the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. We observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R3) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around $R{\geqslant}0.2$ nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift.

Density Functional Theory Study of Acetonitrile -Water Clusters: Structures and Infrared Frequency Shifts

  • Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권5호
    • /
    • pp.725-729
    • /
    • 2007
  • We present calculations for the acetonitrile - water clusters to examine the nature of interactions in the mixed clusters. We calculate conformers of various composition, either of σ -type (-OH and -CN binding linearly) or π -type (-OH and -CN interacting perpendicularly) structures for the acetonitrile - water clusters. We predict that the IR frequency of the proton-accepting C≡N stretching mode red-shifts in the σ -type clusters and blueshifts in π -type conformers, whereas the proton-donating ?OH stretching frequency red-shifts in all cases. We find that this intriguing pattern also applies to the acetonitrile - water clusters of various molar ratio.