• Title/Summary/Keyword: Chemical sensing

Search Result 512, Processing Time 0.023 seconds

A New Strategy for Determining Optimum pH of Isozymes

  • Yoon, Kil-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.997-1002
    • /
    • 2004
  • A hydrogenperoxide sensor containing peroxidase extracted from horseradish was constructed and pH effect on its sensing ability was investigated. Current profiles of the biosensor with pH and the electrophoretic analysis showed that horseradish peroxidase consists of two isozymes. Assuming that it is a hypothetical twoisozyme mixture, the current profiles were deconvoluted into two Gaussians. Application of the new Michaelis-Menten equation connoting pH concept to this system enabled to find all the related dissociation constants of the isozyme-substrates and the isozyme-proton complexes and to determine pHs for the maximal isozyme activities.

Porous Ceramic Fibers: Materials and Applications

  • Kim, Il-Du
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.4-4
    • /
    • 2011
  • Extensive research efforts are directed toward the development of highly sensitive gas sensors using novel nanostructured materials. Among the different strategies for producing sensor devices based on nanosized building blocks, polymeric fiber templating approach which is combined by chemical and physical synthesis routes was attracted much attention. This unique morphology increases the surface area and reduces the interfacial area between film and substrate. Consequently, the surface activity is markedly enhanced while deleterious interfacial effects between film and substrate are significantly reduced. Both effects are highly advantageous for gas sensing applications. In this presentation, facile synthesis of hollow and porous metal oxide nanostructures and their applications in chemical sensors will be discussed.

  • PDF

AHL inhibition of Beckerelide and Fimbrolide

  • Kim, Yeon-Hee;Lee, Jae-Gun;Park, Sung-Hoon;Kim, Jung-Sun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.174.2-174.2
    • /
    • 2003
  • Quorum sensing, a gene expression in response to population density, is regulated by chemical signals, most of which are acylated homoserine lactones (AHLs). The AHL derivatives have been reported to regulate bioluminescence, virulence factors and / or swarming motility in bacteria. It is hypothesized that higher organisms may have evolved specific means to interfere with bacterial communication as exemplified in the AHL-antagonistic activity of halogenated furanones isolated from the Australian macroalga Delisea pulchra. (omitted)

  • PDF