• Title/Summary/Keyword: Chemical reaction catalyst

Search Result 1,273, Processing Time 0.025 seconds

Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst (KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성)

  • Lee, Seungmin;Son, Seokhwan;Jung, Sunghun;Kwak, Wonbong;Shin, Eun Ju;Ahn, Hogeun;Chung, Minchul
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2018
  • Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on $La_2O_3$ and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the $KOH/La_2O_3$ catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst (고체 산촉매를 이용한 창자파래로부터 환원당 생산에 미치는 인자들의 영향)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.478-481
    • /
    • 2015
  • In this study, the hydrolysis of green macro-algae Enteromorpha intestinalis using solid acid catalyst was conducted to obtain total reducing sugar. The hydrolysis was optimized with four reaction parameters of liquid-to-solid (L/S) ratio, catalyst amount, reaction temperature, and reaction time. As a optimized result, the highest TRS of 7.74 g/L was obtained under condition of 7.5 L/S ratio, $140^{\circ}C$, 15% catalyst amount and 2 hr. By the way, at this condition, only 0.13 g/L 5-HMF was detected. The solid acid-catalyzed hydrolysis of marine resources had the potential in the field of bioenergy.

Synthesis of Resol Type Phenol Resins and Their Reaction Properties (Resol형 페놀수지의 합성과 반응특성)

  • Kim, Dong-Kwon;Joe, Ji-Eun;Kim, Jung-Hun;Park, In Jun;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.288-291
    • /
    • 2005
  • Resol type phenol-formaldehyde (PF) resin was synthesized by addition reaction of formaldehyde (F) and phenol (P). And the PF resin was synthesized by condensation reaction in which water was removed. In this work, we studied the influence of experimental parameters in the addition reaction, such as F/P mole ratio, amount of catalyst, reaction temperature, reaction time, and so on. Also, we studied the influence of molecular weight and viscosity of PE resin as a function of condensation time. As a result, in addition reaction, the reaction time decreased remarkably as the catalyst concentration increased, and the time decreased with increasing reaction temperature at a constant catalyst concentration. Also, in condensation reaction, the viscosity of resol type PF resin increased from 1500 to 9000 cps as a function of condensation time; molecular weight showed from 500 to 1100 g/mol.

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

A Study on the Transesterification Reaction between Methyl Methacrylate and Diethanolamine (II) (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구(II))

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.67-71
    • /
    • 1987
  • The transesterification reaction between diethanolamine and methyl methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The amount of reacted methyl methacrylate was measured by gas chromatography and liquid chromatography, and the reaction rate also measured from the amount of reaction products and reactants under each catalyst. The transesterification reaction was carried out in the first order with respect to the concentration of diethanolamine and methyl methacrylate, respectively. The over-all order is 2nd. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

Microwave-Assisted Solvent and Catalyst Free Synthesis of 2H-Pyrans

  • Edayadulla, Naushad;Lee, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2963-2967
    • /
    • 2013
  • This paper describes a simple and efficient method involving domino Knovenegal/$6{\pi}$ electrocyclization for the preparation of a variety of 2H-pyrans using microwave irradiation under solvent- and catalyst-free conditions. This method offers the advantages of a green approach, high yields, and short reaction times. Sixteen compounds (9a-p) were obtained in good to excellent yields using the procedure.

Tin-Free Three-Component Coupling Reaction of Aryl Halides, Norbornadiene (or Norbornene), and Alkynols Using a Palladium Catalyst

  • Choi, Cheol-Kyu;Hong, Jin-Who;Tomita, Ikuyoshi;Endo, Takeshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.112-118
    • /
    • 2002
  • Good-to-excellent yields of 2,3-Disubstituted norbornenes (or norbornanes) were obtained using a Pd/Cu catalyzed three-component ternary coupling reaction of aryl halides, norbornadiene (or norbornene), and alkynols in toluene at $100{\circ}C$ in the presence of 5.5 M NaOH as a base and benzyltriethylammonium chloride as a phase transfer catalyst. The results of experiments using various aromatic halides suggest that the ternary coupling reaction is promoted by bromide.