• Title/Summary/Keyword: Chemical phenomena

Search Result 702, Processing Time 0.028 seconds

Identification of Fouling Phenomena and Establishment for Optimized Removal Process of Alginic Acid Sodium Salt Through Capacitive Deionization (CDI 공정에서 Alginic Acid Sodium Salt의 파울링 현상 확인 및 제거 조건 확립)

  • Lee, Jin Yeon;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.342-349
    • /
    • 2020
  • In this study, we suggest conditions to reduce fouling in capacitive deionization (CDI) caused by alginic acid sodium salt, one of the most common fouling-causing substances in natural water and wastewater management. First, NaCl is used as feed material, which is selected as the control of the experiment. As expected, fouling phenomena is not observed from NaCl. On the other hand, when alginic acid sodium salt is added to the inlet, the fouling phenomena can be observed. In order to minimize the fouling phenomena, the feed concentration of alginic acid sodium salt, applied potential during desorption process, and duration of applied potential to our CDI cell are controlled. With 7 mg/L of feed stream concentration, CDI performed using 1.2 V for 1 min during adsorption followed by desorption with -2 V for 1 min exhibited the highest alginic acid salt removal efficiency reaching 50.07%.

Secondary School Science Teachers' Perceptions about the MixingPhenomenon Related to Dissolution and Diffusion (용해와확산에 관련된 혼합 현상에 대한 중등 과학교사들의 사고 특성)

  • Hur, Mi-Youn;Paik, Seong-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.585-608
    • /
    • 2009
  • The aim of this study was to research the characteristics of science teachers' thinking related to dissolution and diffusion. For this study, five science teachers who majored in chemistry or chemistry education were selected and interviewed. These teachers have been teaching on average for 2$\sim$6 years. From the study, it was discovered that the science teachers didn't recognize the necessity of sorting out diffusion from dissolution. The teachers divided in various mixing phenomena with diverse criteria. The science teachers had difficulty in sorting out diffusion from dissolution based on solubility and Gibbs' energy. The teachers didn't see the linkage between the contents that were divided into chapters, and didn't find omitted contents themselves in the chapters that introduced applicable principles. During the interviews, the teachers felt the need to understand the principles for understanding phenomena. But they did not have the ability to teach these principles after learning about the principles themselves. Therefore, it is necessary to develop teacher education programs, as well as a science curriculum, that helps in linking the knowledge between natural phenomena and principles.

Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena (전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.767-772
    • /
    • 2018
  • Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.

Investigation of Thermal Behavior Characteristic in Chemical Mechanical Polishing Performance (CMP 결과에 영향을 미치는 열적거동 특성에 관한 연구)

  • Jeong, Young-Seok;Kim, Hyoung-Jae;Choi, Jae-Young;Kim, Goo-Youn;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1283-1287
    • /
    • 2004
  • The design rules are being more strict with requirement of operation speed and development of IC industry. For this reason, required minimum line-width has been narrowed under sub-micron region. As the length of minimum line-width is narrowed, local and global planarization are being prominent. CMP(Chemical-Mechanical Polishing), one of the planarizarion technology, is a process which polishes with the ascent of chemical reaction and relative velocity between pad and wafer without surface defects. CMP is performed with a complex interaction among many factors, how CMP has an interaction with such factors is not evident. Accordingly, the studies on this are still carrying out. Therefore, an examination of the CMP phenomena and an accurate understanding of compositive factors are urgently needed. In this paper, we will consider of the relations between the effects of temperature which influences many factors having an effect on polishing results and the characteristics of CMP in order to understand and estimate the influence of temperature. Then, through the interaction of shown temperature and polishing result, we could expect to boost fundamental understanding on complex CMP phenomena.

  • PDF

Chemical Compositio and Structure of Evaporated Alloying Element by Laser Welding Condition (레이저 용접조건에 따른 증발된 합금원소의 조성과 구조의 변화)

  • 조상명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.523-532
    • /
    • 1999
  • This study is aimed to obtain fundamental knowledge of pulse laser welding phenomena the authors investigated the structure and composition of evaporated particles of Al alloys in air and in the Ar atmosphere during pulsed laser welding. The ultra-fine particles of 5 to 100nm diameter in a globular or irregular shape were formed in laser-induced plasma and the main structure was $MgAl_2O_4$ The composition of particles was ifferent depending on the power density of a laser beam; namely under the low power density conditions magnesium was predominant in the parti-cles while aluminium content increased with an increase in the power density. These results were attributed to evaporation phenomena of metals with different boiling points and latent heats of vaporization. On the other hand the number density of laser-induced plasma species was obtained by Saha's equation. it was confirmed that the number density depends upon the plasma tempera-ture and total pressures.

  • PDF

Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding (레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF

Probing of Electrochemical Reactions for Battery Applications by Atomic Force Microscopy

  • Kim, Yun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.98.2-98.2
    • /
    • 2013
  • Electrochemical phenomena underpin a broad spectrum of energy, chemical, and information technologies such as resistive memories and secondary batteries. The optimization of functionalities in these devices requires understanding electrochemical mechanisms on the nanoscale. Even though the nanoscale electrochemical phenomena have been studied by electron microscopies, these methods are limited for analyzing dynamic electrochemical behavior and there is still lack of information on the nanoscale electrochemical mechanisms. The alternative way can be an atomic force microscopy (AFM) because AFM allows nanoscale measurements and, furthermore, electrochemical reaction can be controlled by an application of electric field through AFM tip. Here, I will summarize recent studies to probe nanoscale electrochemical reaction in battery applications by AFM. In particular, we have recently developed electromechanical based AFM techniques for exploring reversible and irreversible electrochemical phenomena on the nanoscale. The present work suggests new strategies to explore fundamental electrochemical mechanisms using the AFM approach and eventually will provide a powerful paradigm for probing spatially resolved electrochemical information for energy applications.

  • PDF

Simluation of PEM Fuel Cell with 2D Steady-state Model (2차원 정상상태 모델을 이용한 고분자전해질형 연료전지의 모사)

  • Chung, Hyunseok;Ha, Taejung;Kim, Hyowon;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.915-921
    • /
    • 2008
  • In most PEM fuel cell research, effects of cell geometry, physical properties of component such as membrane, carbon cloth, catalyst, etc. and water transport phenomena are key issues. The scope of these research was limited to single cell and stack except BOP(Balance of plant) of fuel cell. The research fouced on the fuel cell system usually neglect to consider detailed transport phenomena in the cell. The research of the fuel cell system was interested in a system performance and system dynamics. In this paper, the effect of the anode recirculation is calculated using the 2D steady-state model. For this work, 2D steady-state modeling and experiments are performed. For convenience of modifying of model equation, not commercial pakage but the in-house algorithm was used in simulation. For an vehicle industry, the analysis of the anode recirculation system helps the optimization of operating condition of the fuel cell.