• Title/Summary/Keyword: Chemical phenomena

Search Result 703, Processing Time 0.023 seconds

Effect of Contact Conditions on the Micro-adhesion Characteristics using SPM (SPM을 이용한 접촉조건 변화에 따른 미소응착 특성 연구)

  • 윤의성;박지현;양승호;공호성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.18-22
    • /
    • 2000
  • An experimental study was carried out to investigate the effect of nano-contact condition on the nano-adhesion phenomena. SPM(scanning probe microscope) tips with different radius of curvature were fabricated by a series of masking and etching processes. DLC(diamond-like carbon) and W-DLC (tungsten-incorporated diamond-like carbon) were coated on (100) silicon wafer by PACVD(plasma assisted chemical vapor deposition). Pull-off forces of Pure Si-wafer, DLC and W-DLC were measured with SPM(scanning probe microscope). Also, the same series of tests were carried out with the tips with different radius of curvature. Results showed that DLC and W-DLC showed much lower pull-off force than Si-wafer and Pull-off force increased with the tip radius.

  • PDF

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • Ju, Dong-U;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF

A Study on the Nano-Deformation Behaviors of Single Crystal Silicon and Amorphous Borosilicate Considering the Mechanochemical Reaction (기계화학적 반응을 고려한 단결정 실리콘과 비정질 보로실리케이트의 나노 변형 거동에 관한 연구)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.623-630
    • /
    • 2003
  • Nanomachining process, static nanoplowing, is one of the most promising lithographic technologies in terms of the low cost of operation and variety of workable materials. In nanomachining process, chemical effects are more dominant factor compared with those by physical deformation or fracture. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between diamond tip and the surfaces. On the contrary, in case of chemically stable materials, such as ceramic or glass, surface protuberances are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with micro protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740). In addition, effects of the silicon protuberances on nanoscratch test results were discussed.

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Fluid and Heat Transfer Characterization of Surfactant Turbulent Pipe Flows (계면활성제가 첨가된 관내 난류의 열유동 특성에 관한 고찰)

  • Shin, Kwang-Ho;Yoon, Hyung-Kee;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.982-987
    • /
    • 2006
  • The fluid mechanics and heat transfer of surfactant turbulent pipe flows are characterized with particular emphasis on the effects of surfactant concentration and solution temperature on drag reduction and heat transfer reduction. The test fluids are the surfactant solutions of DR-IW616 supplied by Akzo Nobel Chemical in concentration of $100{\sim}3000ppm$. The solution temperatures studied are $5^{\circ}C$ to $50^{\circ}C$. The critical values of surfactant concentration and solution temperature are clearly identified for drag reduction phenomena.

  • PDF

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.

Numerical Study on Flow and Heat Transfer in a CVD Reactor with Multiple Wafers

  • Jang, Yeon-Ho;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • In this study temperature distribution and gas flow inside a planetary type reactor in which a number of satellites on a spinning susceptor were rotating were analyzed using numerical simulation. Effects of flow rates on gas flow and temperature distribution were investigated in order to obtain design parameters. The commercial computational fluid dynamics software CFD-ACE+ was used in this study. The multiple-frame-of-reference was used to solve continuity, momentum and energy conservation equations which governed the transport phenomena inside the reactor. Kinetic theory was used to describe the physical properties of gas mixture. Effects of the rotation speed of the satellites was clearly seen when the inlet flow rate was small. Thickness of the boundary layer affected by the satellites rotation became very thin as the flow rate increased. The temperature field was little affected by the incoming flow rate of precursors.

Research trend in sugar alternatives (설탕 대체재 연구 동향)

  • Park, Ho-Young;Choi, Hee-Don;Kim, Yoonsook
    • Food Science and Industry
    • /
    • v.49 no.3
    • /
    • pp.40-54
    • /
    • 2016
  • The recent much attention has been given to weight gain of the population and its consequences on the occurrence of diet-related diseases in developed countries. Sugar is considered to be the main culprit of these phenomena. Food manufacturers attempt to provide the consumer with reduced energy products with non-nutritional sugars. Some studies also showed that consumers preferred foods prepared with natural additives rather than chemical ones, due to health reasons. This article reviews issues related to sugar alternatives, as well as their use, health benefits and risks.

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.