• Title/Summary/Keyword: Chemical nonequilibrium

Search Result 33, Processing Time 0.019 seconds

토양에 따른 유기오염물질의 흡.탈착특성

  • Lee Yun-Guk;Baek Gye-Jin;Choi Byeong-Han;Kim Yeon-Hui;Park Jeong-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.191-194
    • /
    • 2005
  • Characteristics of sorption and desorption in soils affect chemical fate, soil-remediation time, and selection of remediation technology. The sorption and desorption behavior of atrazine and naphthalene on soils was studied. Six soils collected at Gwangju area were used as sorbents and the organic matter contents ranged from 1.28 to 5.21%. Sorption and desorption experiments were conducted and sorption distribution coefficients(Kd) of atrazine and naphthalene were nearly linear$(R^2=0.93{\sim}0.97)$. Desorption parameters were evaluated using three site desorption model included equilibrium, nonequilibrium and nondesorption sites. Non-desorbable site fraction for atrazine was evaluated, but for naphthalene it was not enumerated during the experimental period. Through the series dilution desorption experiments, non-desorpbable sites were observed for both chemicals.

  • PDF

Numerical Simulation of Projectiles in Detonable Gases

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. The analysis is limited to inviscid flow and includes chmical nonequilibrium. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction fi:ont is established if the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger. The instabilities of the chemical front with a variation of projectiles diameters will be investigated.

  • PDF

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Multiscale Simulations of Polymeric Liquids under Flow conditions (유동하 고분자 용융체의 다중스케일 전산모사 기법과 응용)

  • Kim, Jun Mo
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.3
    • /
    • pp.28-41
    • /
    • 2021
  • 고분자 시스템의 경우 매우 상이한 시간 및 길이 스케일(time and length scale)에 연관된 복잡한 내부 구조(internal structure)를 가지고 있기 때문에 전통적인 실험 방법만으로는 체계적이고 종합적인 연구가 쉽지 않다. 최근 다양한 시간 및 길이 스케일에 연관된 연구를 진행할 수 있는 다중 스케일 전산 모사(multiscale computer simulation) 방법은 이러한 고분자 시스템 연구에 있어서 새로운 대안으로 각광받고 있다. 본 논문에서는 최근 급격한 발전을 이룬 고분자 용액(polymeric liquid) 시스템에 대한 평형(equilibrium) 및 비평형(nonequilibrium) 전산 모사(computer simulation) 방법들에 관해 소개하고 이를 통합적으로 해석할 수 있는 다중 스케일 전산 모사 방법에 대해 여러 가지 사례를 들어 살펴보았다.

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques (수치 최적화 기법을 이용한 램 가속기 성능 향상 연구)

  • Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Sequestration of Organic Pollutants in the Environments: Implications on Bioavailability and Bioremediation

  • Nam, Kyoungphile
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.107-118
    • /
    • 2000
  • For the last several decades, the fate of organic pollutants has been extensively studied in natural environments with emphasis on sorption and desorption phenomena. Although the mechanisms involved are not clear yet there is a consensus about the existence of hysteresis in the sorption and desorption of organic pollutants. Furthermore, it is found that hysteresis is the outcome of slow nonequilibrium sorption of organic pollutants, which results in the formation of desorption-resistant fractions of the pollutants. Desorption-resistant fractions may increase as a function of the residence time of the pollutants in the environments. Field monitoring data show a slow but continuous decline of chemicals applied to soil, followed by little or no subsequent disappearance. One plausible explanation for such resistance to biodegradation, desorption, or extraction can be attributed the gradual movement of organic pollutants to less accessible remote sites inside the matrix with time. This phenomenon has been termed sequestration or aging. The fact that some pollutants are sequestered in soil with time may have a great impact on bioremediation and risk assessment, Some portion of the resistant pollutants may still be present in the environments after bioremediation. It requires vigorous means to completely remove the aged portion that may not be further bioavailable. However, precaution should be taken since aging is not always evident. Aging seems to be soil and chemical specific.

  • PDF

Premixture Composition Optimization for the Ram Accelerator Performance Enhancement (램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구)

  • 전용희;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2$, $O_2$, $N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species have been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced 19% within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF