• Title/Summary/Keyword: Chemical immersion

Search Result 204, Processing Time 0.023 seconds

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

Concentration Measurement of Alcohol Solution Using Immersion-Type On-Line Refractometer (침적식 온라인 굴절계를 이용한 알코올 농도의 측정)

  • 정옥진;김영한
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.473-477
    • /
    • 2003
  • An immersion-type on-line refractometer useful for the in-situ measurement of chemical composition and temperature is developed, and its performance is examined by applying the refractometer to known alcohol solution having concentrations between 0 vol. % and 25 vol. %. Because refractive index and temperature are measured simultaneously, it is possible to compensate the effect of temperature for fast and direct measurement. The outcome of composition measurement for the different concentrations of alcohol solution indicates that the device is suitable for the chemical composition measurement by yielding stable and reproducible reading.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Surface Protection Technique for Durability Improvement of Concrete Structure (내구성 증진을 위한 콘크리트 구조물의 표면보강 방법)

  • Jin, Nan-Ji;Yeon, Kyu-Seok;Joo, Myung-Ki;Baek, Jong-Man;Lee, Youn-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.169-172
    • /
    • 2002
  • In this study, the effects of the number of coat and immersion period on strength properties, waterproofness and chemical resistance of painted and immersed cement mortars using two admixture were examined. Test results showed that the flexural and the compressive strengths of the coated and immersed cement mortars increase with increasing number of coat and immersion period. The water absorption of the coated and immersed cement mortars tended to decrease with increasing number of coated and immersion period. In the case of the change of weight and the immersion period for the solutions, a decreasing tendency was shown as the immersion period increases regardless of solution, with a little variation.

  • PDF

Evaluation of ENEPIG Surface Treatment for High-reliability PCB in Mobile Module

  • Lee, Joon-Kyun;Yim, Young-Min;Seo, Jun-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.142-147
    • /
    • 2010
  • We evaluated characteristics of ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) surface treatment for mobile equipment that requires high reliability, in addition to investigating surface treatment processes for semiconductor boards that require high reliability such as regular PCB-package systems, board-on-chip, chip-scaled package (CSP), etc and application for semiconductor package board of SIP, BOC. As a result, it appeared that ENEPIG has superior properties compared to ENIG surface treatment in corrosion resistance, solder junction, wetting, etc. We anticipate that these results will be able to lend credibility to ENEPIG as a low-cost alternative for producing mobile devices such as the cell phones, especially when applied to mass production.

Method for Marking on Scales of Juvenile Black Rockfish by Immersion in Three Chemicals (세 화학 물질, Oxytetracycline hydrochloride, Alizarin red S 및 Calcein의 침지 처리에 의한 조피볼락 치어의 비늘 표지)

  • 노충환;최희정;박용주;홍경표;박철원;명정구
    • Journal of Aquaculture
    • /
    • v.12 no.3
    • /
    • pp.237-245
    • /
    • 1999
  • In this study, we evaluated the efficiency of chemical marking of black rockfish scales by immersion in oxytetracycline hydrochloride (OTC, 500 ppm), alizarin red S (AR, 250 ppm) and calcein (CARL, 250 ppm) diluted rearing water. Immersion treatment of chemicals had no effects on both mortality and growth of black rockfish. Marking sucess was 100% in all treatment durations (24, 48 and 72 hours) with three chemicals and marking quality was higher in 48 and 72 hours than 24 hours treatment. Marking retention rates at 24 weeks after treatment were 100% in OTC and CAL treated group, but marking quality was higher in CAL treated group (brilliant 92%, bright 8% and dim 0%) than in OTC treated group (brilliant 4%, bright 70% and dim 26%). AR treated group had lower marking retention rates and marking quality than OTC and CAL treated group. As a results, immersion treatment with OTC and CAL was effective in marking scales of black rockfish and practical in releasing program and other studies requires same rearing environment.

  • PDF

Stress-Strain Relationship of Alkali-Activated Hwangtoh Concrete under Chemical Attack (화학적 침해를 받은 알칼리활성 황토콘크리트의 응력-변형률 관계)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • This study examined the effect of chemical attack on the stress-strain relationship of alkali-activated Hwangtoh concrete. Water-to-binder ratio and air content were selected as mixture parameters. The stress-strain relationship of concrete was measured at chemical immersion times of 0, 7, 28, 56, and 91 days from an age of 28 days. Based on the test results, the reduction in compressive strength of alkali-activated hwangtoh concrete owing to chemical attack was formulated. In sddition the present study demonstrated that the stress-strain behavior of concrete under chemical attack is significantly dependent on the air content and chemical immersion time, indicating the rate of decrease of modulus of elasticity was greater than that of compressive strength at the same immersion time. As a result, the stress-strain behavior of concrete under chemical attack was significantly inconsistent with the conventional models specified in the CEB-FIP provision.

Physico-chemical Properties of Omija Extracts Made Prepared by Various Immersion Conditions (수침 조건을 달리하여 제조한 오미자 추출액의 이화학적 특성)

  • Han, Eun-Sook;Rho, Sook-Nyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.368-375
    • /
    • 2008
  • This study examined the physico-chemical properties of omija extracts that were manufactured using various water temperatures($0^{\circ}C$, $23^{\circ}C$, $70^{\circ}C$) and immersion times(12 hrs, 18 hrs, 24 hrs). The results were as follows: The pH levels of the extracts ranged from 2.86 to 2.95: however, there were no significant differences between the samples according to the various water temperatures and immersion times. The total organic acid contents of the samples ranged from 1.87 to 2.57%, and included citric acid, malic acid, and succinic acid at levels of $1.11{\sim}1.54%$, 0.49{\sim}0.66%$, and $0.25{\sim}0.38%$, respectively. As the immersion time and water temp. is erature increased the level of total organic acid significantly increased(p<0.01). The sugar contents of samples ranged from 3.01 to 3.90% brix, and did not show significant differences according to the immersion times at the different water temperatures(0, 23, $70^{\circ}C$). The Omija extract that was immersed in water for 24 hrs. at $70^{\circ}C$ had a significantly higher(p<0.05) sugar content than the other samples. The total free sugar contents of samples ranged from 0.714 to 0.833%, and included glucose, fructose, and sucrose at levels of $0.37{\sim}0.42%$, 0.34{\sim}0.41%$, and $0.003{\sim}0.004%$, respectively. The Omija extract that was immersed in water for 18 hrs. at $70^{\circ}C$ water had a significantly higher(p<0.05) total free sugar content than the other samples. The lightness, redness, and yellowness values of the samples were in ranges of $49.09{\sim}58.25$, 62.37{\sim}67.34$, and $19.76{\sim}24.57$, respectively; therefore, red was the predominant color of the extracts. Overall, as the immersion time and water temperatures increased is, lightness significantly decreased and redness significantly increased(p<0.001).

  • PDF

Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor (침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Ki-Joon;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

Corrosion Protection Effectiveness and Adsorption Performance of Schiff Base-Quinazoline on Mild Steel in HCl Environment

  • Sayyid, Firas F.;Mustafa, Ali M.;Hanoon, Mahdi M.;Shaker, Lina M.;Alamiery, Ahmed A.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.77-88
    • /
    • 2022
  • Schiff base quinazoline derivative viz., 3-((2-hydroxy-3-methoxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (SB-Q), was synthesized in this study. Its corrosion protection impact on mild steel (MS) in 1 M hydrochloric acid solution was examined by performing weight loss measurements. The protective efficacy of SB-Q on MS in 1 M HCl was investigated based on its concentrations, immersion period, and immersion temperature. SB-Q was found to be an efficient inhibitor for the corrosion of MS. Its inhibition efficiency was improved by increasing the concentration of SB-Q to an optimal concentration of 500 ppm. Its inhibition efficacy was 96.3% at 303K. Experimental findings revealed that its inhibition efficiency was increased with increasing immersion time, but decreased with an increase in temperature. The adsorption of SB-Q molecules was followed the Langmuir adsorption isotherm model. The adsorption of the examined inhibitor molecules on the surface of mild steel was studied by density functional theory (DFT). DFT investigation confirmed weight loss findings.