• Title/Summary/Keyword: Chemical equilibrium analysis

Search Result 227, Processing Time 0.027 seconds

Photo- and Sonic Degradation of Endosulfans(α, β, and sulfate) in Aqueous Solution (엔도설판류의 광 및 초음파분해)

  • Kwon, Sung Hyun;Kim, Jong Hyang;Cho, Daechul
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • Endosulfan-${\alpha}$ endosulfan-${\beta}$ and endosulfan-sulfate, which are classified as pesticides, were degraded by use of UV energy and ultrasonic irradiation. The degradation residuals were analysed by gas chromatography with an electron capture detector and TOC (total oragnic carbon) analysis. The reactions were conducted in a quartz annular reactor equipped with a low pressure mercury multilamp (8Wx2) and a sonic generator. All the aqueous solutions were concentrated as 10 mg/L initially. Endosulfans were degraded each to result in 48.2% (${\alpha}$), 50.0% (${\beta}$) and 76.5% (sulfate) of removal efficiency by UV energy, and 66.9% (${\alpha}$), 55.8% (${\beta}$) and 72.7% (sulfate) by ultrasonic irradiation, respectively. In contrast to the results of the single-component solutions, degradation of the endosulfan-sulfate was greatly suppressed to result in the lowest degradation rate and removal efficiency in the three-component solutions. This finding suggests that there should be a reversible reaction with a substantially low equilibrium constant between endosulfan-${\alpha}$ or -${\beta}$ and -sulfate in the coexistence of the three endosulfans. TOC data showed the endosulfans were decomposed by 20%~40% toward complete mineralization, producing a quantity of intermediates induced by the radical reactions. We found that all the decay reactions considered in this study nicely fell into pseudo first-order rate.

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF

Geochemical Characteristics of Geothermal Water and Groundwater in the Dongrae Hot-Spring Area (동래온천지역의 지열수와 지하수의 지화학적 특성)

  • Suck Jong Han;Se-Yeong Hamm;Ig Hwan Sung;Byeong Dae Lee;Byong Wook Cho;Myong Hee Cho
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.207-225
    • /
    • 1999
  • Twenty water samples (eleven groundwater and nine geothermal water samples) were collected to elucidate hydrogeochemical characteristics of the groundwater and geothermal water in the Dongrae hot-spring area and its vicinity. Major and minor elements were analyzed for ground and geothermal water samples. Physicochemical properties of the groundwater and the geothermal water were examined and chemical composition of the two waters were compared. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. The groundwaters belong to $Ca-HCO_3$ type, while the geothermal waters belong to Na-Cl type. The Na and Cl concentrations in the Dongrae hot-spring area are higher than those of other granite areas in South Korea. The Na/Cl weight ratio ranges from 0.7 to 1.3 for the geothermal waters. On the phase stability diagram groundwaters fall effectively in the field of stability of kaolinite, while geothermal waters fall in the stability field of microcline or kolinite depending on the chemical composition system. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 115 and $145^{\circ}C$.

  • PDF

The Thermodynamics of the Formation of Polymethylbenzene-Halogens Charge Transfer Complexes (III) (폴리메틸벤젠과 할로겐 사이의 전하이동착물 생성에 관한 열역학적 연구 (제3보))

  • Oh Cheun Kwun;Jin Burm Kyong;Jung Sung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.351-360
    • /
    • 1981
  • Ultraviolet spectrophotometric investigations have been carried out on the system of durene with iodine, bromine, iodine monochloride and iodine monobromide in carbon tetrachloride. The results reveal the formation of the charge transfer complexes of the type, $C_6H_2(CH_3)_4{\cdot}X_2$ or $C_6H_2(CH_3)_4{\cdot}IX$(X denotes halogen atoms). The equilibrium constant were obtained in consideration of that absorption maxima due to the formation of the charge transfer complexes shift to blue with the increasing temperatures. The thermodynamic parameters, ${\Delta}H,\;{\Delta}G\;and\;{\Delta}S$ for the formation of the charge transfer complexes were calculated from these values. These results indicate that the relative stabilities of the durene complexes at each temperature decrease in the order, $ICl>IBr>I_2>Br_2$. This order may be a measure of their relative acidities toward durene, which is explained in terms of the relative polarizabilities of halogen molecules and the relative electronegativities of halogen atoms. These results combined with previous study of this series indicated that the relative stabilities of the polymethylbenzene complexes with iodine increase in the order; Benzene

  • PDF

Physical and Mechanical Properties of Heat-treated Domestic Cedar (삼나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.330-339
    • /
    • 2009
  • The material properties of Cedar (Cryptomeria japonica) were evaluated according to heat treatment conditions. The special focus was made on the color control of cedar wood by heat treatment. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature above $170^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition than the control. The heat-treated wood was also effective in increasing the durability against wood rotting fungi. However, more study is required to develop heat treatment as an environmentally-friendly technology for wood preservation without chemical. The mechanical properties of heat-treated wood showed relatively higher performance than the control in general. Meanwhile the dramatic decrease in impact bending stress due to the loss of ductility may limit uses of heat-treated wood in certain cases. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study on the chemical analysis of heat-treated wood is needed to scrutinize the causes of changes of material properties.

The Thermodynamics of the Formation of Polymethylbenzene-Halogens Charge Transfer Complexes (Ⅱ) (폴리메틸벤젠과 할로겐 사이의 전하이동착물 생성에 관한 열역학적 연구 (제2보))

  • Oh Cheun Kwun;Jeong Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.75-84
    • /
    • 1981
  • Ultraviolet spectrophotometric investigations have been carried out on the systems of mesitylene with iodine, bromine, iodine monochloride and iodine monobromide in carbon tetrachloride. The results reveal the formation of the charge transfer complexes of the type, $C_6H_3(CH_3)_3{\cdot}X_2$ or $C_6H_3(CH_3)_3{\cdot}IX$ (X denotes halogen atoms). The equilibrium constants were obtained in consideration of that absorption maxima due to the formation of the charge transfer complexes shift to blue with the increasing temperatures. Thermodynamic parameters, ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the charge transfer complexes were calculated from these values. These results indicate that the relative stabilities of the mesitylene complexes at each temperature decrease in the order, ICl > IBr > $I_2$ > $Br_2$. This order may be a measure of their relative acidities toward mesitylene, which is explaned in terms of the relative polarizabilities of halogen molecules and the relative electronegativities of halogen atoms. These results combined with previous study of this series indicated that the relative stabilities of the polymethylbenzene complexes with iodine increase in the order Benzene < Toluene < Xylene < Mesitylene Thus, analysis of these findings is discussed.

  • PDF

Analysis of Problems in the Phase Diagram of the 2015 Revised Curriculum Chemistry II Textbook (2015 개정 교육과정 화학II 교과서의 상평형 그림에 대한 문제점 분석)

  • Youngha, Hwang;Seoung-Hey, Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this study, six types of 2015 revised curriculum ChemistryII textbooks were analyzed for conditions, definitions, whether or not critical points were displayed, and real-life examples of phase diagram. In this study, it was confirmed that the problems pointed out in several previous studies were not reflected in the 2015 revised curriculum ChemistryII textbook. The same as the situation defining the phase diagram, the translation of the phase diagram into a phase equilibrium diagram, the distinction between phase and state being unclear, the critical point not being shown in the phase diagram, real life examples are very limited what is being presented as is suggested as a problem. Therefore, it is necessary to reflect the results of various previous studies in the revised curriculum ChemistryII textbook that will be made in the future, specify the conditions under which the phase diagram is drawn, newly model the situation defining the phase diagram, and translate the phase diagram as a 'phase diagram'. It is necessary to use the term, clarify the distinction between phase and state, mark the critical point in the phase diagram, and develop various real-life examples.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.