• Title/Summary/Keyword: Chemical equilibrium analysis

Search Result 229, Processing Time 0.024 seconds

Structural and Magnetic Properties of Monomeric and Dimeric Copper(II) Complexes with Phenyl-N-[(pyridine-2-yl)methylene]methaneamide

  • Lee, Hong-Woo;Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Choi, Jae-Soo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1711-1716
    • /
    • 2008
  • The reaction of copper(II) chloride with phenyl-N-[(pyridine-2-yl)methylene]methaneamide (ppmma) leads to a new $\mu$ -chloro bridged dimeric [Cu(ppmma)$Cl_2$]$_2$ complex, whereas a reaction of copper(II) bromide with ppmma affords a monomeric Cu(ppmma)$Br_2$ complex. Both complexes have been characterized by X-ray crystallography and electronic absorption spectroscopy. The crystal structural analysis of [Cu(ppmma)$Cl_2$]$_2$ shows that the two Cu(II) atoms are bridged by two chloride ligands, forming a dimeric copper(II) complex and the copper ion has a distorted square-pyramidal geometry ($\tau$ = 0.2). The dimer units are held through a strong intermolecular $\pi-\pi$ interactions between the nearest benzyl rings. On the other hand, Cu(ppmma)Br2 displayed a distorted square planar geometry with two types of strong intermolecular π-π interaction. EPR spectrum of [Cu(ppmma)$Cl_2$]$_2$ in frozen glas s at 77 K revealed an equilibrium between the mononuclear and binuclear species. The magnetic susceptibilities data of [Cu(ppmma)$Cl_2$]$_2$ and Cu(ppmma)$Br_2$ follow the Curie-Weiss law. No significant intermolecular magnetic interactions were examined in both complexes, and magnetic exchange interactions are discussed on the basis of the structural features.

The Near Infrared Spectroscopic Studies on the Hydrogen Bonding Ability of Thiopropionamide (티오프로피온 아미드의 수소 결합 능력에 대한 근 적외선 분광학 연구)

  • Ju, Sul-A;Park, Jeunghee;Yoon, Chang-Ju;Choi, Young-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.837-841
    • /
    • 1995
  • Thermodynamic parameters for the hydrogen bonding between thiopropionamide(TPA) and proton donors such as triethylphosphine oxide(TEPO), triphenylphosphine oxide(TPPO), trimethylphosphate(TMP), and tributyl phosphate(TBP) in dilute carbon tetrachloride solution have been measured by near-IR spectroscopy. The νa + amide Ⅱ combination band of TPA has been resolved into two Lorentzian-Gaussian product components which have been identified with monomeric TPA and 1 : 1 hydrogen bonded complex. The equilibrium constants and thermodynamic parameters for the formation of 1 : 1 hydrogen bonded complex have been obtained by the analysis of concentration and temperature dependent spectra. The standard enthalpies for the 1 : 1 hydrogen bonded complex formation of TPA with TEPO, TPPO, TMP, and TBP in CCl4 have been found to be - 21.4, - 16.8, - 12.8, and - 12.9 kJ/mol, respectively. The results are explained by the inductive and steric effects of substituents.

  • PDF

Synthesis of Basic Alkali Metal Aluminium Carbonates (鹽基性炭酸알루미늄 알칼리金屬 化合物의 合成)

  • Byong Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.53-59
    • /
    • 1977
  • A method of synthesizing $NaAlCO_3(OH)_2$ (Dawsonite) and $KAlCO_3(OH)_2$, was investigated by blowing $CO_2$ gas into sodium and potassium aluminate solutions. The reactions were accomplished at a temperature of 80 to $90^{\circ}C$, while $CO_2$ gas was blowing into the solutions which the molar ratios of $Na_2O/Al_2O_3,\;and\;K_2O/Al_2O_3$ were 6 to 8 and 8 to 10, respectively. It was observed that highly purified Dawsonite and $KAlCO_3(OH)_2$ are produced when Alumina is present in Boehmite at an equilibrium solid phase with a large amount of $HCO_3^-$ in the solutions. The rational formulas of Dawsonite and $KAlCO_3(OH)_2$synthesized under the conditions should be expressed as $NaAlO(OH)HCO_3\;and\;KAlO(OH)HCO_3$, respectively, by IR analysis. In addition, electron microscopic observation also indicated that Dawsonite in a fibrous crystal and $KAlCO_3(OH)_2$ in a needleshaped crystal.

  • PDF

Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

  • Bae, Byoung-Jae;Lee, Kwang-Yeol;Seo, Won-Seok;Miah, Md. Arzu;Kim, Keun-Chong;Park, Joon T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1661-1666
    • /
    • 2004
  • The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti($O^iPr)_2(CH_3COCHCONEt_2)_2$ (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and $^1H/^{13}C$ NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis($CONEt_2$), trans($COCH_3$) configuration (1a) in a distorted octahedral environment. Variable-temperature $^1H$ NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20$^{\circ}C$ in toluene-$d_8$ solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500$^{\circ}C$ under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500$^{\circ}$ using a bubbler-based MOCVD method.

Thermodynamic Equilibrium Analysis of Copper Chemical Vapor Deposition from Cu(II) Hexafluoroacetylacetonate Precursor (Cu(II) Hexafluoroacetylacetonate 프리커서에 의한 구리 화학증착의 열역학적 평형조성 해석)

  • Jeon, Chi-Hun;Kim, Yun-Tae;Baek, Jong-Tae;Yu, Hyeong-Jun;Park, Dong-Won;Choe, Byeong-Jin;Kim, Dae-Ryong
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.657-666
    • /
    • 1995
  • Chemical vapor deposition of copper from the Cu(hfac)$_2$, Cu(II) hexafluoroacetylacetonate precursor, has been thermodynamically investigated by the minimization of Gibbs free energy of the system. For the Cu(hfac)$_2$-Ar system, carbon incorporation into the deposited films was observed in all the process conditions, which is presumably inherent from the thermal decomposition of the Cu(hfac)$_2$, precursor. For the Cu(hfac)$_2$-H$_2$system, lower temperatures were required than those of the Cu(hfac)$_2$-Ar system for the depositon of the copper films. Furthermore, we identified that the appearances of the condensed phases were sequentially changed from the codeposits of C(s)+CuF(s) to C(s)+CuF(s)+Cu(s), C(s)+Cu(s), Cu(s), and C(s), when the H$_2$input ratio and th reaction temperature were increased.

  • PDF

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu;Tang, Qiang;Chen, Su;Gu, Fan;Li, Zhenze
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process (휘발산화 공정 조건에 따른 Cs-Te-O 시스템의 산화 환원 거동 연구)

  • Park, Byung Heung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.700-708
    • /
    • 2013
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. Pyroprocessing has been developed with the dry technologies which are performed under high temperature conditions excluding any aqueous processes. Pyro-processes which are based on the electrochemical principles require pretreatment processes and a voloxidation process is considered as a pretreatment step for an electrolytic reduction process. Various kinds of gas conditions are applicable to the voloxidation process and the understanding of Cs behavior during the process is of importance for the analyses of waste characteristics and heat load on the overall pyroprocessing. In this study, the changes of chemical compounds with the gas conditions were calculated by analyzing gas-solid reaction behavior based on the chemical equilibria on a Cs-Te-O system. $Cs_2TeO_3$ and $Cs_2TeO_4$ were selected after a Tpp diagram analysis and it was confirmed that they are relatively stable under oxidizing atmospheres while it was shown that Cs and Te would be removed by volatilization under reducing atmosphere at a high temperature. This work provided basic data for predicting Cs behavior during the voloxidation process at which compounds are chemically distributed as the first stage in the pyroprocessing and it is expected that the results would be used for setting up material balances and related purposes.

Design, Analysis and Experiment of Potato Gun with a Spherical Projectile (구형 탄환을 이용한 감자총의 설계, 해석 및 시험)

  • Kang, Hong-Jae;Kim, Ji-Hwan;Kim, Young-Sik;Son, So-Eun;Choi, Han-Ul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.796-804
    • /
    • 2013
  • The "Potato Gun," a simple heat engine, is fabricated, tested and analyzed as a part of engineering education program of combustion and propulsion classes. Combustor pressure is predicted by the chemical equilibrium analysis of a constant volume combustor. Then, the internal ballistics, the conversion of thermal energy into the mechanical energy of a projectile, is predicted though the expansion process. The trajectory of a projectile is estimated by considering the aerodynamic effect around the spherical projectile. The energy conversion efficiency and the equivalence ratio of the fuel-air mixture could be estimated by the comparison of the experimental results and the theoretical prediction. The present work would be an example of attracting the interest of students for the application of the engineering principles at undergraduate level by recycling the waste materials.

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections (중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석)

  • Zhu, Xingji;Kim, Soye;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.66-74
    • /
    • 2016
  • The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

Removal of Cadmium and Manganese Ions Utilizing Astragalus uliginosus L.-Stem Biochar (황기 줄기 바이오차를 활용한 카드뮴과 망간 이온의 제거)

  • Choi, Suk Soon;Ha, Jeong Hyub;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Astragalus uliginosus L.-stems as a by-product of oriental medicine are produced largely in a northern area of Chungbuk province. These by-products do not have any demand and thus usually discarded into the fields as a waste. In this work, a biochar was prepared from the Astragalus uliginosus L.-stem waste for recycling. The biochar was used to investigate the removal characteristics of cadmium and manganese ions dissolved in water. When adsorption equilibrium experiments were performed to treat 50 and 100 mg/L of cadmium ions, the removal efficiencies of cadmium were 100 and 95%, respectively. In addition, the maximum of adsorption amount for manganese ions in 5 h at an initial concentration of 50 and 100 mg/L was found to be as 36.1 and 37.9 mg/g, respectively. Based on the experimental results, it was found that the adsorption amount of Astragalus uliginosus L.-stem biochar for the removal of both cadmium and manganese ions was four times higher than that of the activated carbon. The surface analysis of both biochar and activated carbon samples using X-ray photoelectron spectroscopy (XPS) analysis showed that the oxygen content and O/C ratio of biochar was 2.1 and 2.4 times higher than that of the activated carbon, respectively. In order to enhance the removal capability of manganese, 50 and 100 mg/L of manganese ions were operated at different temperatures. It was observed that these equilibrium was attained in 4 h under 45 ℃ and removal efficiencies were 92 and 53%, respectively. Consequently, the experimental results can be utilized as a new removal technology for eco-friendly and economically treating cadmium and manganese ions dissolved in water.