• Title/Summary/Keyword: Chemical density

Search Result 3,719, Processing Time 0.035 seconds

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

On the Electronegativity of Molecule (분자의 전기음성도에 관한 이론적 고찰)

  • Ho Jing Kim;Jong Hyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.3-8
    • /
    • 1985
  • Molecular electronegativity (EN) values are calculated employing the density functional definition of EN: the negative of the chemical potential in the density functional theory. Calculations are limited to the use of valence electrons (valence electron approximation). Our formula for the EN is given in terms of Hartree-Fock(HF) orbital energies. Resulting EN values for molecules as well as atoms exhibit a remarkable correlation with other existing scales. For molecules, we have achieved electronegativity equalization principle (Sanderson's principle).

  • PDF

Zeolite-catalyzed Isomerization of 1-Hexene to trans-2-Hexene: An ONIOM Study

  • Li, Yan-Feng;Zhu, Ji-Qin;Liu, Hui;He, Peng;Wang, Peng;Tian, Hui-Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1851-1858
    • /
    • 2011
  • Details of the double-bond isomerization of 1-hexene over H-ZSM-5 were clarified using density functional theory. It is found that the reaction proceeds by a mechanism which involves the Br${\o}$nsted acid part of the zeolite solely. According to this mechanism, 1-hexene is first physically adsorbed on the acidic site, and then, the acidic proton transfers to one carbon atom of the double bond, while the other carbon atom of the double bond bonds with the Br${\o}$nsted host oxygen, yielding a stable alkoxy intermediate. Thereafter, the Br${\o}$nsted host oxygen abstracts a hydrogen atom from the $C_6H_{13}$ fragment and the C-O bond is broken, restoring the acidic site and yielding trans-2-hexene. The calculated activation barrier is 12.65 kcal/mol, which is in good agreement with the experimental value. These results well explain the energetic aspects during the course of double-bond isomerization and extend the understanding of the nature of the zeolite active sites.

Formation of Niobium Oxide Film with Duplex Layers by Galvanostatic Anodization

  • Kim, Hyun-Kee;Yoo, Jeong-Eun;Park, Ji-Young;Seo, Eul-Won;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2675-2678
    • /
    • 2012
  • Studies on niobium anodization in the mixture of 1 M $H_3PO_4$ and 1 wt % HF at galvanostatic anodization are described here in detail. Interestingly, duplex niobium oxide consisting of thick barrier oxide and correspondingly thick porous oxide was prepared at a constant current density of higher than 0.3 $mAcm^{-2}$, whereas simple porous type oxide was formed at a current density of lower than 0.3 $mAcm^{-2}$. In addition, simple barrier or porous type oxide was obtained by galvanostatic anodization at a single electrolyte of either 1 M $H_3PO_4$ or 1 wt % HF, respectively. The formation mechanism of duplex type structures was ascribed to different forming voltages required for moving anions.

Study on the Pervaporation Characteristic of Water-alcohol Mixtures through Aromatic Polyetherimide Membranes : II. the Pervaporation of Water-isopropanol Mixtures by the Density Change of Skin Layer (방향계 폴리에테르이미드막의 물-알콜 혼합액의 투과증발 특성에 관한 연구 : II.skin layer의 density변화에 의한 물-이소프로판올 혼합액의 투과증발)

  • Kim, S.G.;Jegal, J.G.;Lee, K.H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.853-859
    • /
    • 1997
  • For asymmetric polyetherimide membranes having a dense layer gradient structure on the skin layer, the morphology change and pervaporation behaviors of water/isopropanol mixture through chemical modification of dense skin layer were investigated. The extent of the density was controlled by the evaporation, time, and when the evaporation time was increased from 0 min to 4 min, the permeation flux was decreased, the separation factor was increased. Also, the pervaporation behaviors of the polyetherimide membranes modified with sodium hydroxide solution, as the modification time of dense skin layer increased, the selectivity increased, and the permeation flux decreased. The morphology change identified by SEM shows that the density of dense skin layer tends to increase with increasing modification time, this result is consistent with above observations.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D.;Sarangapani, Radhakrishnan;Jadhav, Pandurang. M.;Tewari, Surya. P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.564-570
    • /
    • 2012
  • s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.