• Title/Summary/Keyword: Chemical density

Search Result 3,707, Processing Time 0.028 seconds

Synthesis of Pd and Pt Based Low Cost Bimetallic Anode Electrocatalyst for Glycerol Electrooxidation in Membraneless Air Breathing Microfluidic Fuel Cell

  • Panjiara, Deoashish;Pramanik, Hiralal
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.38-57
    • /
    • 2021
  • The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.

Synthesis of Cyclitol Derivatives (Ⅲ). Electrolytic Oxidation of myo-Inositol (Cyclitol 유도체 합성에 관한 연구 (제3보)-myo-Inositol의 전해 산화-)

  • Joo Hwan Sohn;Chong Woo Nam;Yu Ok Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1971
  • To obtain the various kinds of inosose stereomers, the process of electrochemical oxidation is more effective than chemical oxidation of myo-inositol. So that myo-inositol aqueous solution was electrolyzed by platinum and lead peroxide anode to confirming the occurrence of electrochemical oxidation. The result is that myo-inosose-2 is producing with high yield comparatively by electrolytic oxidation of myo-inositol. Also we studied about the relation between the electrolytic current efficiency and electrolytic temperature and anodic current density. The current efficiency is rising with lowering of electrolytic temperature identically in both anode such as platinum and lead peroxide and also rising with increasing of anodic current density in platinum anode, but inversely in lead peroxide.

  • PDF

Electrochemical Studies on Heptamethine Cyanine Dyes

  • Kim, Young-Sung;Shin, Jong-Il;Park, Soo-Youl;Jun, Kun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2009
  • Computational calculations of molecular orbital and electrochemical redox/oxidation potentials are of very importance to determine the compound properties. The energy levels of molecular orbital were calculated by the density function theory (DFT) with exchange correction functional of local density approximation (LSA) based on the Perdew-Wang (PWC) setting and cyclic voltammetry.

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II) (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II))

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Initial Reaction of Hexachlorodisilane on Amorphous Silica Surface for Atomic Layer Deposition Using Density Functional Theory

  • Kim, Ki-Young;Yang, Jin-Hoon;Shin, Dong-Gung;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.443-447
    • /
    • 2017
  • The initial reaction of hexachlorodisilane ($Si_2Cl_6$, HCDS) on amorphous silica ($SiO_2$) surface for atomic layer deposition was investigated using density functional theory. Two representative reaction sites on the amorphous $SiO_2$ surface for HCDS reaction, a surface hydroxyl and a two-membered ring, were considered. The reaction energy barrier for HCDS on both sites was higher than its adsorption energy, indicating that it would desorb from the surface rather than react with the surface. At high temperature range, some HCDSs can have kinetic energy high enough to overcome the reaction energy barrier. The HCDS reaction on top of the reacted HCDS was investigated to confirm its self-limiting characteristics.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Supercapacitor performances of carbon nanotube composite carbon fibers from electrospinning

  • Yang, Kap-Seung;Kim, Chan;Lee, Wan-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.69-70
    • /
    • 2003
  • 10 wt.% of PAN was dissolved in N,N-dimethylformamide (DMF) and 1 wt. % of the multi wall carbon nanotubes (MWCNTs) was evenly dispersed in PAN solution by using ultrasonic miner. The 1 wt.% addition of MWCNT increased the specific capacitance by two times more from 82 to 160 F/g. The specific capacitance of carbon nanofiber(CNF)/carbon nanotube(CNT) composite capacitors was about 90 F/g at the current density of 500 mA/g. This value is even larger than the capacitance from the CNF electrode at the current density of 5 mA. The relatively high capacitance at the high current density is a practical importance for applications to supercapacitor in motor vehicle.

  • PDF

A Study on the Reactor Design of Solid-Solid-Gas Chemical Heat Pump System (고체-고체-기체 화학 열펌프 시스템의 반응기 설계에 관한 연구)

  • Kim, S.J.;Lee, T.H.;Neveu, P.;Choi, H.K.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.406-416
    • /
    • 1994
  • In this study the reactor design procedure and method of solid-solid-gas chemical heat pump system using STELF technology were investigated. For manufacturing IMPEX block which is the kernel of reactor, proper salt pair should be selected, and equilibrium temperature drop and COP should be examined for selected salt pair. Moreover, apparent density, residual porosity, and graphite ratio should be calculated to give minimum block volume and mass, and maximum energy density without causing heat and mass transfer problems. Since heat exchange area can be changed with operating condition, reactor diameter, length, and stainless steel thickness should be decided for desired specifications. These procedure and method were applied to the case study of 6kW cold production and 8 hours storage capacity reactor.

  • PDF