• Title/Summary/Keyword: Chemical density

Search Result 3,719, Processing Time 0.032 seconds

Change in Chemical Compositions of Leachate and Medium Density Fiberboard from a Laboratory-scale Simulated Landfill

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.231-240
    • /
    • 2016
  • The change in chemical compositions of leachate and medium density fiberboard (MDF) from a laboratory-scale simulated landfill which constructed in a plastic container containing alternating layers of soil and MDF was investigated to evaluate decomposing of MDF in soil. Four treatments were conducted: 1) MDF in soil, 2) MDF only, 3) cured UF resin in soil, and 4) soil only. Molecular weight (MW) distribution of compounds in leachate from soil only treatment did not change over time. In UF resin in soil treatment, the MW distribution shifted to a lower MW distribution over time, while the peak shifted to the left indicated changing to higher MW distribution in leachate from treatment 1 and 2 contained MDF. Higher percent nitrogen in leachate was observed in MDF containing treatments due to the UF resin in the MDF. The percent carbon slightly increased in MDF only while that greatly decreased in MDF in soil treatment maybe due to bacterial activity. The percent of extractable materials from the MDF decreased greatly on day 35 compare to day 0, and subsequently did not change much on day 77. In contrast, percent holocellulose and lignin did not change much over time. No structural change of the wood fiber in MDF occurs during the study. Water-soluble materials from MDF in soil contributed the change in chemical composition of leachate.

Synthesis and Properties of Polyester System Polyurethane without Solvent (무용제 반응에 의한 폴리에스테르계 폴리우레탄의 합성 및 특성)

  • Kwak Noh-Seok;Yang Yun-Kyu;Jeong Boo-Young;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • Polyurethanes(PUs) were synthesized by reaction of isophorone diisocyanate, acetylbutyl citrate, and 3 types of polycaprolactone diol. Their structures were confirmed by FT-IR and NMR spectrometer. And, their thermal and mechanical properties were measured by TGA ud UTM. The effective network chain lengths ($\bar{M}_c$), measured by compressive modulus apparatus, were about $8000\~24000$ g/mol. As crosslinking density and amount of hard segment increased, tensile strength increased and elongation decreased. As the crosslinking density of PUs increased, thermal property inproved. When the ratio of NCO/OH is 1.1, maximum crosslinking density was achieved.

A Novel Hybrid Supercapacitor Using a Graphite Cathode and a Niobium(V) Oxide Anode

  • Park, Gum-Jae;Kalpana, D.;Thapa, Arjun Kumar;Nakamura, Hiroyoshi;Lee, Yun-Sung;Yoshio, Masaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.817-820
    • /
    • 2009
  • To meet the high current load requirement from the high energy density realized by metal oxide and high power density graphite, we propose a novel hybrid supercapacitor consisting of Nb2O5 and KS6 graphite in 1.0 M LiPF6-EC:DEC (1:2). This new system exhibits a sloping voltage profile from 2.7 to 3.5 V during charging and presents a high operating voltage plateau between 1.5 and 3.5 V during discharging. The cell was tested at a current density of 100 mA/g with a cut-off voltage between 3.0 and 1.0 V. This novel energy storage system delivers the highest initial discharge capacity of 55 mAh/g and exhibits a good cycle performance.

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF

Electropolishing Characteristics of Stainless Steel for Industrial Application (산업현장 적용을 위한 스테인레스 스틸의 전해연마 특성)

  • Kim, Soo Han;Lee, Seung Heon;Cho, Jaehoon;Kim, Sang Bum;Choi, Joongso;Park, Chulhwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.363-367
    • /
    • 2016
  • For the industrial application of electropolishing process, we investigated electropolishing characteristics of stainless steel through increasing the specimen size or electrode gap. In this study, we performed a set of experiment with the specimen size of $10cm{\times}10cm$ and the electrode gap of 1 cm or more. In the view of the electropolishing process, the electrolyte temperature and the polishing time were most important factors compared with the current density and the electrode gap. Especially, the electrolyte temperature most importantly affected surface roughness and current efficiency on electropolishing characteristics. For the industrial application of electropolishing process, it should be considered for important factors such as electrolyte temperature, polishing time, current density and electrode gap, etc.

Packing Density Parameters of Palladium Nanoparticle Monolayers Fabricated via Spin-Coating Electrostatic Self-Assembly

  • An, Minshi;Hong, Jong-Dal;Cho, Kyung-Sang;Lee, Eun-Sung;Choi, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.623-626
    • /
    • 2008
  • Spin-coating electrostatic self-assembly (SCESA) is utilized to fabricate a single layer of carboxylic-acid-coated Pd nanoparticles (NPs) (D??5 nm) on an oppositely charged surface. The packing density of a NP monolayer formed on a rotating solid substrate (3000 rpm) was examined with regards to various parameters, including the particle concentration, the pH, and the ionic strength of the solution. Initially, the packing density grew exponentially with increases in the particle concentration, up to a maximum value (of 8.4 ´ 1011/cm2) at 1.2 wt%. The packing density was also found to increase drastically as the pH decreased and the ionic strength of the solution increased; these trends can be attributed to a reduction in the interparticle repulsions among the NPs in the solution and on the substrate. The best result of this study was achieved in a 1.2 wt% solution at pH 8; under these conditions, an NP monolayer with the highest density (namely, 1.6 ´ 1012/cm2) was obtained.

Plastic Deformation Behavior of Sintered Fe-Based Alloys for Light-Weight Automotive Components

  • Kang, Yohan;Yoon, Suchul;Kim, Minwook;Lee, Seok-Jae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.151-159
    • /
    • 2014
  • We investigated the effects of the chemical composition and the relative density on the plastic deformation behavior of sintered Fe-based alloys by means of compressive tests. Overall compressive stresses increased as the amount of alloying elements and the relative density were respectively increased. Addition of alloying elements except for Mo increased the yield stress regardless of the relative density. The relationship between the effects of the chemical composition and the relative density and the mean rate of the stress increase was analyzed. A constitutive equation based on the Ludwik equation with the regressed parameters was proposed to predict the compressive true stress-true strain curves of the sintered Fe-based alloys. The K and n values used in the proposed equation were regressed as a function of the alloying elements and the relative density based on the individual K and n values. The plastic deformation behavior predicted using the proposed constitutive equation showed reliable accuracy compared with experimental data.

A Computational Study on the Adsorption Characteristics of Hydrocarbons (Propylene, n-Butane and Toluene) by uing Cation-exchanged ZSM-5 Zeolites

  • Lee, Hyun Chul;Kim, Kyung Min;Choi, Sung Il;Kim, Yong Ha;Woo, Hee Chul;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.909-913
    • /
    • 2018
  • A hydrocarbon trap (HT) plays an important role of controlling vehicle emissions in the so-called cold emission period by holding hydrocarbons until three way catalysts (TWCs) are thermally activated. In this study, we have investigated the adsorption characteristics of cation (H, La, K, and Ag)-exchanged ZSM-5 zeolites for hydrocarbons (propylene, n-butane, and toluene) by DFT (density functional theory)-based computational chemistry. Cation exchange is to improve the hydrothermal stability of zeolites and their adsorption capacity, thereby rendering cation-exchanged zeolites promising materials for HT. The idea of cluster approximation makes the calculation of adsorption energies superbly efficient in computation. The results showed that Ag-exchanged ZSM-5 would be the best for the adsorption of all three adsorbates, without often encountered Ag oxidation in experiments. Besides, the hydrothermal stability of La-exchanged ZSM-5 was confirmed from the change of geometrical parameters by cation exchange, and it showed good adsorption capacity for propylene and toluene. Hydrogen-exchanged ZSM-5 was also good for hydrogen adsorption, but had poor hydrothermal stability.

Fracture Behaviors of SiCf/SiC Composites Prepared by Hybrid Processes of CVI and PIP (화학침착법과 고분자함침 열분해법의 복합공정으로 제조한 SiCf/SiC 복합체의 제조 공정에 따른 파괴거동)

  • Park, Ji Yeon;Han, Jangwon;Kim, Daejong;Kim, Weon-Ju;Lee, Sea Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.430-434
    • /
    • 2014
  • $SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.