• 제목/요약/키워드: Chemical cleaning method

Search Result 124, Processing Time 0.023 seconds

The Characteristics of Cr-Free Coating Hot Dip Galvanized Sheet Steel

  • Kim, Jong-Gi;Moon, Man-Been;Yun, Jeong-Mo
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • The greatest purpose of chromate treatment is to improve anti-corrosion by stabilizing a metal surface. Because metal surface forms a compound by absorbing oxygen or water in the air by being generally unstable, it is necessary to improve anti-corrosion of the metal by forming the metal surface with a stable film. When considering the economical efficiency and requirements together because the film of the metal surface treated with chromate has good anti-corrosion and the stability also in the air by being compact and strong, Chromate treatment has been used most up to the electronics industry from the auto industry. However, these days, because hexavalent chromium is both a toxic agent to be able to cause cancers and deadly poisonous environmental pollutant, the strong legal controls on its use is being imposed all over the world. Because of this reason, a new anti-corrosion method is being required. Also, by users' various demands, the passivations that have recently been developed require various characteristics such as conductivity, chemical resistance, alkali cleaning resistance as well as anti-corrosion. We could confirm the results such as excellent anti-corrosion compared to chromate, conductivity, chemical resistance and detergent resistance as the result of analysis of various characteristics of the galvannealed sheet steels coated with Cr-Free solution developed in this research.

Performance Evaluation of Quality-Improved Recycled Aggregate Using Ultrasonic Wave and Chemical Neutralization Reaction (초음파 세척 및 화학적 중화반응을 이용한 품질 개선된 순환골재의 성능 평가)

  • Jay Jang-Ho Kim;Young-Jun You
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • This paper presents experimental research results to evaluate the applicability of chemical neutralization reaction and ultrasonic wave to remove cement paste and mortar attached to the surface of recycled aggregate. In order to derive optimal ultrasonic cleaning efficiency and chemical neutralization reaction, experiments were conducted using variables such as ultrasonic frequency and type of chemical solution. As a result, the optimal frequency was found to be 24 kHz, and immersion in a 15% hydrochloric acid solution for 30 minutes of stimulation showed the highest efficiency. In addition, the specific gravity, absorption rate, and wear rate of the quality-improved recycled coarse aggregate were similar to those of general aggregate and were found to satisfy all KS F 2527 standards. Therefore, it is believed that the recycled aggregate whose quality has been improved through the method proposed in this study can be used for concrete.

Natural Indigo Dyeing of Wool by the One Step Reduction/Dyeing Method (일단계 환원/염색에 의한 모직물의 천연인디고 염색)

  • Son, Kyung-Hee;Shin, Youn-Sook;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.508-517
    • /
    • 2010
  • One-step reduction/dyeing method was optimized for wool dyeing with natural indigo dye in this study. The effects of reduction/dyeing conditions including dye temperature and time, the pH of bath, concentration of dye, and reducing agent on dye uptake and color were investigated. The dye uptake was higher with no addition of alkali. Dyeing was carried out through the use of only sodium hydrosulfite in the bath. The maximum dye uptake was obtained at $60^{\circ}C$ for 30min and the dyed fabrics appeared in the PB Munsell color range. Dye uptake improved with the increase of a natural indigo dye concentration with the same sodium hydrosulfite concentration. At a higher dye uptake, the fabric color became more purplish and the maximum absorption shifted from 660nm to 620nm. Color reproducibility was reliable with a color difference in the range of 0.41~1.43. Regardless of color strength, washing and dry cleaning fastnesses were good with a 4/5 rating, and fastnesses to rubbing and light were acceptable with a 3/4~4 rating.

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method (이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조)

  • Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

Three-Dimensional Modeling of the Solar Active Region

  • Inoue, S.;Magara, T.;Choe, G.S.;Kusano, K.;Shiota, D.;Yamamoto, T.T.;Watari, S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.85.2-85.2
    • /
    • 2012
  • In this paper, we introduce the 3D modeling of the coronal magnetic field in the solar active region by extrapolating from the 2D observational data numerically. First, we introduce a nonlinear force-free field (NLFFF) extrapolation code based on the MHD-like relaxation method implementing the cleaning a numerical error for Div B proposed by Dedner et al. 2002 and the multi-grid method. We are able to reconstruct the ideal force-free field, which was introduced by Low & Lou (1990), in high accuracy and achieve the faster speed in the high-resolution calculation (512^3 grids). Next we applied our NLFFF extrapolation to the solar active region NOAA 10930. First of all, we compare the 3D NLFFF with the flare ribbons of Ca II images observed by the Solar Optical Telescope (SOT) aboard on the Hinode. As a result, it was found that the location of the two foot-points of the magnetic field lines well correspond to the flare ribbon. The result indicates that the NLFFF well capture the 3D structure of magnetic field in the flaring region. We further report the stability of the magnetic field by estimating the twist value of the field line and finally suggest the flare onset mechanism.

  • PDF

Development of MBR System Commercialization Technology Using a Membrane with a Good Fouling Resistance (막 오염 저항성이 우수한 분리막을 이용한 MBR 시스템의 실증화 기술개발)

  • Choi, J.H.;Lee, J.B.;Kim, I.C.
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • In this study, we tried to solve membrane fouling with membranes made by fine nano-particle in MBR process. And we confirmed good fouling resistance in pilot test. In this test, we confirmed our membrane with titania out-standing quality by testing in the pilot long-term test by comparing to other company product. Our membrane keep up steadily $20{\sim}25 L/m^2{\cdot}hr$ high flux in $7,000{\sim}13,000mg/L$ MLSS high sludge concentration. In addition to this quality, we studied membrane flux character related membrane arrangement, membrane-air line arrangement, air-line hole size, cleaning solution concentration, treatment method, etc. Using the optimization of this additional parameter, we tried to search method of maximizing membrane quality.

Recycling Technique of Nano TiO2-Coated Silica-bead (나노광촉매가 코팅된 실리카 비드의 재생 연구)

  • Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3269-3273
    • /
    • 2009
  • In this study, recycling methods of nano $TiO_2$-coated silica-bead were conducted in order to solve a deactivation problem of bead that had been invented for decomposition of pollutants in aqueous solution. Surface cleansing was selected as the recycling method for used beads. The surface cleansing was done with four different solutions such as distilled water, surfactant, acetone, and ethyl alcohol(ethanol). The recycling process consists of cleansing and calcination. After cleaning the used (deactivated) beads, calcination was done at $100^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ for 30 minutes, respectively. This process was repeated three times. The activity of the recycled bead was measured by photo-degradation of methylene blue. The result shows that acetone cleansing and calcination at $100^{\circ}C$ for 30 minutes was the most efficient recycling method.

Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC) (저등급 석탄으로부터 초청정석탄 제조 기술)

  • Lee, Sihyun;Kim, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.443-450
    • /
    • 2008
  • Efficient use of low rank coals (LRC) have been investigated as a method to cope with recent high oil price. Among the coals used in industry, lignite and sub-bituminous coals are belong to the LRC, and have abundant deposit and are distributed worldwide, but high moisture contents and self ignition properties inhibits their utilization. In this paper, chemical coal cleaning to produce ash-free coal from LRC has been investigated. Two technologies, that is, UCC(Ultra Clean Coal) process removing ash from coal and Hyper Coal process extracting combustibles from coal were compared with. UCC process has merits of simple and reliable when it compared with Hyper Coal process, but the remaining ash contents werehigher than Hyper Coal. Hyper Coal has ash contents under the 200ppm when raw coal is treated with appropriate solvent and ion exchange materials to remove alkali materials in extracted solution. The ash-free coal which is similar grade with oil can be used as alternate oil in the industry, and also used as a high grade fuel for IGCC, IGFC and other advanced combustion technology.

Study on Passive Layer Characteristics of Chemically Passivated Duplex Stainless Steel (화학적 부동태 처리에 따른 듀플렉스 스테인리스 강의 피막 특성에 관한 연구)

  • Jang, Heui-Un;Lee, Jung-Hoon;Kim, Yong-Hwan;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.219-225
    • /
    • 2012
  • The aim of the present study was to investigate the corrosion resistance and characteristics of passive layer between naturally passivated and chemically passivated duplex stainless steel, UNS S31803 (EN 1.4462) using CPT, XPS, and EIS. The treatment of $HNO_3$(II) and $HNO_3$(III) in ASTM A 967 was applied. In case of chemically passivated specimen, CPT of $HNO_3$(II) and $HNO_3$(III) were higher than that of naturally passivated specimen. In addition, from XPS results, the protectiveness index (Cr/(Fe+Cr)) of chemically passivated specimens was also higher than that of naturally passivated specimen. The reason for this result is considered due to post-cleaning treatment in chemical passivation process, that is, immersion in $Na_2Cr_3O_7$ solution. The fact that $HNO_3$(II) passivation treatment showed the highest film resistance and 'n', which is exponent related with constant phase element (CPE) of passivation film, was in good agreement with results of CPS and XPS. The chemical passivation treatment was an effective method to improve corrosion resistance of duplex stainless steel.

A Study on the Fabrication of Multi-Walled Nanotubes (MWCNT) Based Thin Film and Chemical Sensor Operation Characteristics (Multi-Walled Carbon Nanotubes (MWCNT) 인쇄박막의 제작과 화학센서 동작 특성에 관한 연구)

  • Noh, Jae Ha;Choi, Junseck;Ko, Dongwan;Seo, Joonyoung;Lee, Sangtae;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.181-185
    • /
    • 2020
  • Hazardous and noxious substance (HNS) detection sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) and various binder materials for ion batteries. To obtain uniformly printed films, the printing precision according to the substrate cleaning method was monitored, and the printing paste mixing ratio was investigated. Binders were prepared using styrene butadiene rubber + carboxymethyl cellulose (SBR+CMC), polyvinylidene fluoride + n-methyl-2-pyrrolidene (PVDF+NMP), and mixed with MWCNTs. The surface morphology of the printed films was examined using an optical microscope and a scanning electron microscope, and their electrical properties are investigated using an I-V sourcemeter. Finally, sensing properties of MWCNT printed films were measured according to changes in the concentration of the chemical under the various applied voltages. In conclusion, the MWCNT printed films made of (SBR+CMC) were found to be feasible for application to the detection of hazardous and noxious chemicals spilled in seawater.