• 제목/요약/키워드: Chemical buffer

검색결과 677건 처리시간 0.03초

Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis (창자파래로부터 citrate buffer를 이용한 전처리와 효소가수분해를 통한 환원당 생산)

  • Kim, Dong-Hyun;Kim, A-Ram;Park, Don-Hee;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.70-74
    • /
    • 2016
  • In this study, the effects of citrate buffer pretreatment conditions (solid-to-liquid ratio, reaction temperature, pH and concentration of buffer) on enzymatic hydrolysis of E. intestinalis for total reducing sugar (TRS) production were investigated. As a results of the citrate buffer pretreatment, a 5.40% hydrolysis yield was obtained under conditions including 1:10 solid-to-liquid ratio, 0.25 M citrate buffer (pH 3.5) at $140^{\circ}C$ for 60 min. The maximum hydrolysis yield of 18.68% was obtained to enzymatic hydrolysis after pretreatment. This result is 1.81 times higher than that of control.

Application of Buffer Layers for Back Contact in CdTe Thin Film Solar Cells

  • Chun, Seungju;Kim, Soo Min;Lee, Seunghun;Yang, Gwangseok;Kim, Jihyun;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.318.2-318.2
    • /
    • 2014
  • The high contact resistance is still one of the major issues to be resolved in CdS/CdTe thin film solar cells. CdTe/Metal Schottky contact induced a high contact resistance in CdS/CdTe solar cells. It has been reported that the work function of CdTe thin film is more than 5.7 eV. There has not been a suitable back contact metal, because CdTe thin film has a high work function. In a few decades, some buffer layer was reported to improve a back contact problem. Buffer layers which are Te, $Sb_2Te_3$, $Cu_2Te$, ZnTe:Cu and so on was inserted between CdTe and metal electrode. A formed buffer layers made a tunnel junction. Hole carriers which was excited in CdTe film by light absorption was transported from CdTe to back metal electrode. In this report, we reported the variation of solar cell performance with different buffer layer at the back contact of CdTe thin film solar cell.

  • PDF

Vapor Phase Epitaxy of Magnesium Oxide on Si(001) Using a Single Precursor

  • Lee, Sun-Sook;Lee, Sung-Yong;Kim, Chang G.;Lee, Sang-Heon;Nah, Eun-Ju;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.122-122
    • /
    • 2000
  • Magnesium oxide is thermodynamically very stable, has a low dielectric constant and a low refractive index, and has been widely used as substrate for growing various thin film materials, particulary oxides of the perovskite structure. There has been a considerable interest in integrating the physical properties of these oxides with semiconductor materials such as GaAs and Si. In this regard, it is considered very important to be able to grow MgO buffer layers epitaxially on the semiconductors. Various oxide films can then be grown on such buffer layers eliminating the need for using MgO single crystal substrates. Vapor phase epitaxy of magnesium oxide has been accomplished on Si(001) substrates in a high vacuum chamber using the single precursor methylmagnesium tert-butoxide in the temperature range 750-80$0^{\circ}C$. For the epitaxy of the MgO films, SiC buffer layers had to be grown on Si(001). The films were characterized by reflection high energy electron diffraction (RHEED) in situ in the growth chamber, and x-ray diffraction (XRD), x-ray pole figure analysis, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) after the growth.

  • PDF

Infrared Multiphoton Dissociation of ${CF_2}HCl$: Laser Fluence Dependence and the Effect of Intermolecular Collisions

  • Song, Nam-Woong;Shin, Kook-Joe;Lee, Sang-Youb;Jung, Kyung-Hoon;Choo, Kwang-Yul;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.652-658
    • /
    • 1991
  • The effect of intermolecular collisions in the infrared multiphoton dissociation (IRMPD) of difluorochloromethane was investigated using He, Ar, and $N_2$ as buffer gases. The reaction probability for IRMPD of difluorochloromethane was measured as a function of laser fluence and the buffer gas pressure under unfocused beam geometry. It was observed that the reaction probability was initially enhanced with the increase of buffer gas pressure up to about 20 torr, but showed a decline at higher pressures. The reaction probability increases monotonically with the laser fluence, but the rate of increase diminishes at higher fluences. An attempt was made to simulate the experimental results by the method of energy grained master equation (EGME). From the parameters that fit the experimental data, the average energy loss per collision, $<{\Delta}E>_d$, was estimated for the He, Ar, and $N_2$ buffer gases.

$CO_2$ Laser Induced Decomposition of 1-Bromo-3-Chloropropane

  • Byoung Soo Chun;Nam Woong Song;Kwang Yul Choo
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권3호
    • /
    • pp.214-220
    • /
    • 1990
  • We have studied the Infrared Multiphoton Dissociation (IRMPD) of 1-bromo-3-chloropropane by using the pulsed $CO_2$ laser. The product yields and the HCl/HBr branching ratios in IRMPD of $BrCH_2CH_2CH_2Cl$ are studied under the focused beam geometry as a function of buffer gas (He) pressure, laser energy, and photolysing wavelength. It is observed that the total dissociation yield has a laser energy dependence of 1.8-2.0 power order and the branching ratio is very slightly dependent on the pulse energy for the laser lines employed. The dependences of total dissociation yield and branching ratio on the buffer gas pressures show that the dissociation yield monotonically decreases and the branching ratio slightly decreases with the increase of the buffer gas pressure. The Energy-Grained Master Equation (EGME) was applied to explain the laser pulse energy and the buffer gas pressure(He) dependence of the dissociation yield and the branching ratio.

Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System (Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응)

  • Lee, K.W.;Chae, H.C.;Choi, C.M.;Kim, M.H.
    • Korean Journal of Materials Research
    • /
    • 제17권2호
    • /
    • pp.61-67
    • /
    • 2007
  • The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.

The Mechanical and Optical Properties of Diamond-like Carbon Films on Buffer-Layered Zinc Sulfide Substrates

  • Song, Young-Silk;Song, Jerng-Sik;Park, Yoon
    • The Korean Journal of Ceramics
    • /
    • 제4권1호
    • /
    • pp.9-14
    • /
    • 1998
  • Diamond-like carbon(DLC) films were deposited on buffer-layered ZnS substrates by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) method. Ge and GeC buffer layera were used between DLC and ZnS substrates to promote the adhesion of DLC on ZnS substrates. Ge buffer layers were sputter deposited by RF magnetron sputtering and $GeC^1$ buffer layers were deposited by same method except using acetylene reactive gas. The relatinship between film properties and deposition conditions was investigated using gas pressure, RF power and dc bias voltage as PECVD parameters. The hardness of DLC films were measured by micro Vickers hardness test and the adhesion of DLC films on buffer-layered ZnS substrates were studied by Sebastian V stud pull tester. The optical properties of DLC films on butter-layered ZnS substrates were characterized by ellipsometer and FTIR spectroscopy.

  • PDF

Investigation of the various properties of several candidate additives as buffer materials

  • Gi-Jun Lee;Seok Yoon;Taehyun Kim;Seeun Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1191-1198
    • /
    • 2023
  • Bentonite buffer material is a critical component in an engineered barrier system (EBS) for disposing high-level radioactive waste (HLW). The bentonite buffer material protects the disposal canister from groundwater penetration and releases decay heat to the surrounding rock mass; thus, it should possess high thermal conductivity, low hydraulic conductivity, and moderate swelling pressure to safely dispose the HLWs. Bentonite clay is a suitable buffer material because it satisfies the safety criteria. Several additives have been suggested as mixtures with bentonite to increase the thermal-hydraulic-mechanical-chemical (THMC) properties of bentonite buffer materials. Therefore, this study investigated the geotechnical, mineralogical, and THMC properties of several candidate additives such as sand, graphite, granite, and SiC powders. Datasets obtained in this study can be used to select adequate additives to improve the THMC properties of the buffer material.

The Interaction of HIV-1 Inhibitor 3,3',3",3‴-Ethylenetetrakis-4-Hydroxycoumarin with Bovine Serum Albumin at Different pH

  • Dong, Sheying;Yu, Zhuqing;Li, Zhiqin;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2063-2069
    • /
    • 2011
  • We studied the interaction of 3,3',3'',3'''-ethylenetetrakis-4-hydroxycoumarin (EHC) with bovine serum albumin (BSA) in acetate buffer and phosphate buffer with different pH values by UV-vis absorption spectrometry and fluorescence spectrometry respectively. It was found that the pH values of the buffer solutions had an effect on the interaction process. In acetate buffer of pH 4.70, the carbonyl groups in EHC bound to the amino groups in BSA by means of hydrogen bond and van der Waals force, which made the extent of peptide chain in BSA changed. By contrast, in phosphate buffer of pH 7.40, hydrophobic force played a major role in the interaction between EHC and BSA, while the hydrogen bond and van der Waals force were also involved in the interaction. The results of spectrometry indicated that BSA could enhance the fluorescence intensity of EHC by forming a 1:1 EHC-BSA fluorescent complex through static mechanism at pH 4.70 and 7.40 respectively. Furthermore, EHC bound on site 1 in BSA.

Preparation and Characterization of Cd-Free Buffer Layer for CIGS by Chemical Bath Deposition (화학습식공정을 이용한 CIGS 태양전지용 Cd-free 버퍼층 박막 제조 및 특성 분석)

  • Hwang, Dae-Kue;Jeon, Dong-Hwan;Sung, Shi-Joon;Kim, Dae-Hwan;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.146-148
    • /
    • 2012
  • In our study, we have focused on optimizing good quality of ZnS buffer layer by chemical bath deposition (CBD) from a bath containing $ZnSO_4$, Thiourea and Ammonia in aqueous solution onto CIGS solar cells. The influence of deposition parameter such as pH, deposition temperature, stirring speed played a very important role on transmission, homogeneity, crystalline of ZnS buffer layer. The transmission spectrum showed a good transmission characteristic above 80% invisible spectral region. CIGS thin flim solar cell with ZnS buffer layer has been realized with the efficiency of 14.2%.

  • PDF